Auteurs : ... (Auteur de la Conférence)
... (Editeur )
Résumé :
The Euler-Korteweg system corresponds to compressible, inviscid fluids with capillary forces. It can be used to model diffuse interfaces. Mathematically it reads as the Euler equations with a third order dispersive perturbation corresponding to the capillary tensor.
In dimension one there exists traveling waves with equal or different limit at infinity, respectively solitons and kinks. Their stability is ruled by a simple criterion a la Grillakis-Shatah-Strauss. This talk is devoted to the construction of multiple traveling waves, namely global solutions that converge as $t\rightarrow \infty $ to a profile made of several (stable) traveling waves. The waves constructed have both solitons and kinks. Multiple traveling waves play a peculiar role in the dynamics of dispersive equations, as they correspond to solutions that follow in some sense a purely nonlinear evolution.
Keywords : solitons; Euler-Korteweg; stability
Codes MSC :
35B35
- Stability of solutions of PDE
35Q35
- PDEs in connection with fluid mechanics
35Q53
- KdV-like (Korteweg-de Vries) equations
35Q31
- Euler equations
35C07
- Traveling wave solutions of PDE
|
Informations sur la Rencontre
Nom de la rencontre : Inhomogeneous Flows: Asymptotic Models and Interfaces Evolution / Fluides inhomogènes : modèles asymptotiques et évolution d'interfaces Dates : 23/09/2019 - 27/09/2019
Année de la rencontre : 2019
URL Congrès : https://conferences.cirm-math.fr/1919.html
DOI : 10.24350/CIRM.V.19562603
Citer cette vidéo:
(2019). Multiple traveling waves of the Euler-Korteweg system. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19562603
URI : http://dx.doi.org/10.24350/CIRM.V.19562603
|
Voir aussi
Bibliographie
- C.Audiard, Existence of multi-traveling waves in capillary fluids, to appear Proc.Roy.Soc.Edinburgh. - https://arxiv.org/abs/1809.01454
- S.Benzoni, R.Danchin, S.Descombes and D.Jamet, Structure of Korteweg models and stability of diffuse interfaces, Interfaces free bound. 7 (2005), 371–414. - http://dx.doi.org/10.4171/IFB/130
- M.Ming, F.Rousset, N.Tzvetkov, Multi-solitons and related solutions for the waterwaves system, SIAM J.Math.Anal. 47 (2015), 897-954 - https://doi.org/10.1137/140960220