En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    Highly-oscillatory evolution equations: averaging and numerics

    Sélection Signaler une erreur
    Virtualconference
    Auteurs : Lemou, Mohammed (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : Usual numerical methods become inefficient when they are applied to highly oscillatory evolution problems (order reduction or complete loss of accuracy). The numerical parameters must indeed be adapted to the high frequencies that come into play to correctly capture the desired information, and this induces a prohibitive computational cost. Furthermore, the numerical resolution of averaged models, even at high orders, is not sufficient to capture low frequencies and transition regimes. We present (very briefly) two strategies allowing to remove this obstacle for a large class of evolution problems : a 2-scale method and a micro/macro method. Two different frameworks will be considered : constant frequency, and variable - possibly vanishing - frequency. The result of these approaches is the construction of numerical schemes whose order of accuracy no longer depends on the frequency of oscillation, one then speaks of uniform accuracy (UA) for these schemes. Finally, a new technique for systematizing these two methods will be presented. Its purpose is to reduce the number of inputs that the user must provide to apply the method in practice. In other words, only the values of the field defining the evolution equation (and not its derivatives) are used.These methods have been successfully applied to solve a number of evolution models: non-linear Schrödinger and Klein-Gordon equations, Vlasov-Poisson kinetic equation with strong magnetic field, quantum transport in graphene.

    Keywords : multi-scale numerical methods; highly oscillatory equations; averaging; varying frequency

    Codes MSC :
    35Q55 - NLS-like equations (nonlinear Schrödinger)
    37L05 - General theory, nonlinear semigroups, evolution equations
    65L05 - Initial value problems for ODE (numerical method)

    Ressources complémentaires :
    https://www.cirm-math.fr/RepOrga/2355/Slides/slide_Mohammed_LEMOU.pdf

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 09/04/2021
      Date de captation : 22/03/2021
      Sous collection : Research talks
      arXiv category : Numerical Analysis
      Domaine : Numerical Analysis & Scientific Computing ; Mathematics in Science & Technology
      Format : MP4 (.mp4) - HD
      Durée : 00:44:21
      Audience : Researchers
      Download : https://videos.cirm-math.fr/2021-03-22_Lemou.mp4

    Informations sur la Rencontre

    Nom de la rencontre : Jean Morlet Chair 2021- Conference: Kinetic Equations: From Modeling Computation to Analysis / Chaire Jean-Morlet 2021 - Conférence : Equations cinétiques : Modélisation, Simulation et Analyse
    Organisateurs de la rencontre : Bostan, Mihaï ; Jin, Shi ; Mehrenberger, Michel ; Montibeller, Celine
    Dates : 22/03/2021 - 26/03/2021
    Année de la rencontre : 2021
    URL Congrès : https://www.chairejeanmorlet.com/2355.html

    Données de citation

    DOI : 10.24350/CIRM.V.19735003
    Citer cette vidéo: Lemou, Mohammed (2021). Highly-oscillatory evolution equations: averaging and numerics. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19735003
    URI : http://dx.doi.org/10.24350/CIRM.V.19735003

    Voir aussi

    Bibliographie

    • CHARTIER, Philippe, LEMOU, Mohammed, MÉHATS, Florian, et al. A new class of uniformly accurate numerical schemes for highly oscillatory evolution equations. Foundations of Computational Mathematics, 2020, vol. 20, no 1, p. 1-33. - https://doi.org/10.1007/s10208-019-09413-3

    • CHARTIER, Ph, LEMOU, Mohammed, MÉHATS, Florian, et al. Highly oscillatory problems with time-dependent vanishing frequency. SIAM Journal on Numerical Analysis, 2019, vol. 57, no 2, p. 925-944. - https://doi.org/10.1137/18M1203456

    • CROUSEILLES, Nicolas, JIN, Shi, LEMOU, Mohammed, et al. A micro-macro method for a kinetic graphene model in one space dimension. Multiscale Modeling & Simulation, 2020, vol. 18, no 1, p. 444-474. - https://doi.org/10.1137/18M1173770

    • CHARTIER, Philippe, LEMOU, Mohammed, MÉHATS, Florian, et al. Derivative-free high-order uniformly accurate schemes for highly-oscillatory systems. To appear 2021. - https://hal.inria.fr/hal-03141156



    Sélection Signaler une erreur
    Close