En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Manage my selections

  • z

    Destination de la recherche

    Raccourcis

    1

    Tutorial on cellular automata - lecture 2

    Bookmarks Report an error
    Multi angle
    Authors : Ollinger, Nicolas (Author of the conference)
    CIRM (Publisher )

    00:00
    00:00
     

    Abstract : This tutorial surveys computational aspects of cellular automata, a discrete dynamical model introduced by S. Ulam and J. von Neumann in the late 40s: a regular grid of finite state cells evolving synchronously according to a common local rule described by a finite automaton.

    Formally, a cellular automaton is a tuple (d,S,N,f) where dN is the dimension of the cellular space, S is the finite set of states, Nfinite Zd is the finite neighborhood and f:SNS is the local rule of the cellular automaton.

    A configuration cSZd is a coloring of the cellular space by states.

    The global transition function G:SZdSZd applies f uniformly according to N, i.e. for every configuration cSZd and every position zZd it holds
    G(c)(z)=f(c(z+v1),,c(z+vm)) where N={v1,,vm}.
    A space-time diagram ΔSZd×N is obtained by piling successive configurations of an orbit, i.e. for every time step tN it holds Δt+1=G(Δt).

    Computing inside the cellular space: The first part of the tutorial considers cellular automata as a universal model of computation. Several notions of universality are discussed: boolean circuit simulation, Turing universality, intrinsic universality. Special abilities of cellular automata as a model of massive parallelism are then investigated.

    Computing properties of cellular automata: The second part of the tutorial considers properties of cellular automata and their computation. De Bruijn diagrams and associated regular languages are introduced as tools to decide injectivity and surjectivity of the global transition function in the one-dimensional case. Both immediate and dynamical properties are introduced, in particular the notion of limit set.

    Computation and reduction: undecidability results: The last part of the tutorial considers computing by reduction to establish undecidability results on some properties of cellular automata: injectivity and surjectivity of the global transition function in higher dimensions, nilpotency and intrinsic universality in every dimension, a Rice's theorem for limit sets.

    Keywords : cellular automata; models of computation; decision problems; undecidability

    MSC Codes :
    37B10 - Symbolic dynamics
    37B15 - Cellular automata
    68Q05 - Models of computation (Turing machines, etc.)
    68Q45 - Formal languages and automata
    68Q80 - Cellular automata (theory of computing)

      Information on the Video

      Film maker : Hennenfent, Guillaume
      Language : English
      Available date : 19/02/2024
      Conference Date : 02/02/2024
      Subseries : Research School
      arXiv category : Formal Languages and Automata Theory ; Discrete Mathematics ; Dynamical Systems
      Mathematical Area(s) : Computer Science ; Dynamical Systems & ODE
      Format : MP4 (.mp4) - HD
      Video Time : 01:31:37
      Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
      Download : https://videos.cirm-math.fr/2024-02-02_Ollinger_part2.mp4

    Information on the Event

    Event Title : Research School in Discrete Mathematics and Computer Science / École de recherche en mathématiques discrètes et informatique - WEEK 1
    Event Organizers : Cassaigne, Julien ; Chalopin, Jérémie ; Chepoi, Victor ; Guillon, Pierre ; Moutot, Etienne ; Theyssier, Guillaume
    Dates : 29/01/2024 - 02/02/2024
    Event Year : 2024
    Event URL : https://conferences.cirm-math.fr/3148.html

    Citation Data

    DOI : 10.24350/CIRM.V.20136903
    Cite this video as: Ollinger, Nicolas (2024). Tutorial on cellular automata - lecture 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20136903
    URI : http://dx.doi.org/10.24350/CIRM.V.20136903

    See Also

    Bibliography

    • DELORME, Marianne. An introduction to cellular automata: some basic definitions and concepts. In : Cellular automata: a parallel model. Dordrecht : Springer Netherlands, 1999. p. 5-49. - http://dx.doi.org/10.1007/978-94-015-9153-9_1

    • KARI, Jarkko. Theory of cellular automata: A survey. Theoretical computer science, 2005, vol. 334, no 1-3, p. 3-33. - https://doi.org/10.1016/j.tcs.2004.11.021

    • BÄCK, Thomas, KOK, Joost N., et ROZENBERG, G. Handbook of natural computing. Springer, Heidelberg, 2012. -



    Imagette Video

    Bookmarks Report an error
    Close