En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Linear isometries on the Fréchet space of holomorphic functions on the open unit disc and the annulus

Bookmarks Report an error
Multi angle
Authors : Chalendar, Isabelle (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Let $\mathrm{X}$ be a topological space of holomorphic functions on the open unit disc $D$. The study of the geometry of a space $X$ is centered on the identification of the linear isometries on $\mathrm{X}$, and there is an obvious connection between weighted composition operators and isometries. This connection can be traced back to Banach himself and emphasized by Forelli, El-Gebeily, Wolfe, Kolaski, Cima, Wogen, Colonna and many others. A characterisation is given of all the linear isometries of Hol($\Omega$), the Fr´ echet space of all holomorphic functions on $\Omega$ when $\Omega$ is the unit disc or an annulus, endowed with one of the standard metrics. Further, the larger class of operators isometric when restricted to one of the defining seminorms is identified. This is a joint work with Lucas Oger and Jonathan Partington.

Keywords : Fréchet space; holomorphic functions; isometry; annulus; weighted composition operator; spectrum

MSC Codes :
30H05 - Spaces and algebras of analytic functions, See also {32E25, 46Exx, 46J15}
47A10 - Spectrum and resolvent of linear operators
47B33 - Composition operators

    Information on the Video

    Film maker : Récanzone, Luca
    Language : English
    Available date : 14/12/2024
    Conference Date : 03/12/2024
    Subseries : Research talks
    arXiv category : Functional Analysis ; Complex Variables
    Mathematical Area(s) : Analysis and its Applications
    Format : MP4 (.mp4) - HD
    Video Time : 00:37:43
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-12-03_Chalendar.mp4

Information on the Event

Event Title : Operators on analytic function spaces / Opérateurs sur des espaces de fonctions analytiques
Event Organizers : Fricain, Emmanuel ; Garcia, Stephan Ramon ; Gorkin, Pamela ; Hartmann, Andreas ; Mashreghi, Javad
Dates : 02/12/2024 - 06/12/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/3085.html

Citation Data

DOI : 10.24350/CIRM.V.20273303
Cite this video as: Chalendar, Isabelle (2024). Linear isometries on the Fréchet space of holomorphic functions on the open unit disc and the annulus. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20273303
URI : http://dx.doi.org/10.24350/CIRM.V.20273303

See Also

Bibliography

  • CHALENDAR, Isabelle, OGER, Lucas, et PARTINGTON, Jonathan R. Linear isometries on the annulus: description and spectral properties. arXiv preprint arXiv:2409.16105, 2024. - https://doi.org/10.48550/arXiv.2409.16105

  • ARENDT, Wolfgang, BERNARD, Eddy, CELARIES, Benjamin, et al. Spectral properties of weighted composition operators on Hol(\mathbb{D}) induced by rotations, Indiana Univ. Math. J. 72 (2023), 1789-1820 - https://doi.org/10.1512/iumj.2023.72.9511

  • CHALENDAR, Isabelle, OGER, Lucas, et PARTINGTON, Jonathan R. Linear isometries of Hol (D). Journal of Mathematical Analysis and Applications, 2024, p. 128619. - https://doi.org/10.1016/j.jmaa.2024.128619

  • CHALENDAR, Isabelle, OGER, Lucas, et PARTINGTON, Jonathan R., Linear and isometries on the annulus: description and spectral properties, submitted -

  • EL-GEBEILY, Mohamad et WOLFE, John. Isometries of the disc algebra. Proceedings of the American Mathematical Society, 1985, vol. 93, no 4, p. 697-702. - https://doi.org/10.1090/S0002-9939-1985-0776205-9

  • FORELLI, Frank. The isometries of Hp. Canadian Journal of Mathematics, 1964, vol. 16, p. 721-728. - https://doi.org/10.4153/CJM-1964-068-3



Imagette Video

Bookmarks Report an error