Authors : Chalendar, Isabelle (Author of the conference)
CIRM (Publisher )
Abstract :
Let $\mathrm{X}$ be a topological space of holomorphic functions on the open unit disc $D$. The study of the geometry of a space $X$ is centered on the identification of the linear isometries on $\mathrm{X}$, and there is an obvious connection between weighted composition operators and isometries. This connection can be traced back to Banach himself and emphasized by Forelli, El-Gebeily, Wolfe, Kolaski, Cima, Wogen, Colonna and many others. A characterisation is given of all the linear isometries of Hol($\Omega$), the Fr´ echet space of all holomorphic functions on $\Omega$ when $\Omega$ is the unit disc or an annulus, endowed with one of the standard metrics. Further, the larger class of operators isometric when restricted to one of the defining seminorms is identified. This is a joint work with Lucas Oger and Jonathan Partington.
Keywords : Fréchet space; holomorphic functions; isometry; annulus; weighted composition operator; spectrum
MSC Codes :
30H05
- Spaces and algebras of analytic functions, See also {32E25, 46Exx, 46J15}
47A10
- Spectrum and resolvent of linear operators
47B33
- Composition operators
Film maker : Récanzone, Luca
Language : English
Available date : 14/12/2024
Conference Date : 03/12/2024
Subseries : Research talks
arXiv category : Functional Analysis ; Complex Variables
Mathematical Area(s) : Analysis and its Applications
Format : MP4 (.mp4) - HD
Video Time : 00:37:43
Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
Download : https://videos.cirm-math.fr/2024-12-03_Chalendar.mp4
|
Event Title : Operators on analytic function spaces / Opérateurs sur des espaces de fonctions analytiques Event Organizers : Fricain, Emmanuel ; Garcia, Stephan Ramon ; Gorkin, Pamela ; Hartmann, Andreas ; Mashreghi, Javad Dates : 02/12/2024 - 06/12/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/3085.html
DOI : 10.24350/CIRM.V.20273303
Cite this video as:
Chalendar, Isabelle (2024). Linear isometries on the Fréchet space of holomorphic functions on the open unit disc and the annulus. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20273303
URI : http://dx.doi.org/10.24350/CIRM.V.20273303
|
See Also
Bibliography
- CHALENDAR, Isabelle, OGER, Lucas, et PARTINGTON, Jonathan R. Linear isometries on the annulus: description and spectral properties. arXiv preprint arXiv:2409.16105, 2024. - https://doi.org/10.48550/arXiv.2409.16105
- ARENDT, Wolfgang, BERNARD, Eddy, CELARIES, Benjamin, et al. Spectral properties of weighted composition operators on Hol(\mathbb{D}) induced by rotations, Indiana Univ. Math. J. 72 (2023), 1789-1820 - https://doi.org/10.1512/iumj.2023.72.9511
- CHALENDAR, Isabelle, OGER, Lucas, et PARTINGTON, Jonathan R. Linear isometries of Hol (D). Journal of Mathematical Analysis and Applications, 2024, p. 128619. - https://doi.org/10.1016/j.jmaa.2024.128619
- CHALENDAR, Isabelle, OGER, Lucas, et PARTINGTON, Jonathan R., Linear and isometries on the annulus: description and spectral properties, submitted -
- EL-GEBEILY, Mohamad et WOLFE, John. Isometries of the disc algebra. Proceedings of the American Mathematical Society, 1985, vol. 93, no 4, p. 697-702. - https://doi.org/10.1090/S0002-9939-1985-0776205-9
- FORELLI, Frank. The isometries of Hp. Canadian Journal of Mathematics, 1964, vol. 16, p. 721-728. - https://doi.org/10.4153/CJM-1964-068-3