Authors : Hauser, Herwig (Author of the conference)
CIRM (Publisher )
Abstract :
In this series of four lectures we develop the necessary background from commutative algebra to study solution sets of algebraic equations in power series rings. A good comprehension of the geometry of such sets should then yield in particular a "geometric" proof of the Artin approximation theorem.
In the first lecture, we review various power series rings (formal, convergent, algebraic), their topology ($m$-adic, resp. inductive limit of Banach spaces), and give a conceptual proof of the Weierstrass division theorem.
Lecture two covers smooth, unramified and étale morphisms between noetherian rings. The relation of these notions with the concepts of submersion, immersion and diffeomorphism from differential geometry is given.
In the third lecture, we investigate ring extensions between the three power series rings and describe the respective flatness properties. This allows us to prove approximation in the linear case.
The last lecture is devoted to the geometry of solution sets in power series spaces. We construct in the case of one $x$-variable an isomorphism of an $m$-adic neighborhood of a solution with the cartesian product of a (singular) scheme of finite type with an (infinite dimensional) smooth space, thus extending the factorization theorem of Grinberg-Kazhdan-Drinfeld.
CIRM - Chaire Jean-Morlet 2015 - Aix-Marseille Université
MSC Codes :
14B25
- Local structure of morphisms: étale, flat, etc. [See also 13B40]
|
Event Title : Jean-Morlet Chair - Doctoral school : Introduction to Artin approximation and the geometry of power series Event Organizers : Hauser, Herwig ; Rond, Guillaume Dates : 26/01/15 - 30/01/15
Event Year : 2015
Event URL : https://www.chairejeanmorlet.com/1254.html
DOI : 10.24350/CIRM.V.18683803
Cite this video as:
Hauser, Herwig (2015). Commutative algebra for Artin approximation - Part 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18683803
URI : http://dx.doi.org/10.24350/CIRM.V.18683803
|
See Also
Bibliography
- [1] Atiyah, M.F., & Macdonald, I.G. (1969). Introduction to commutative algebra. Reading (Mass.) ; London ; Don Mills (Ont.): Addison-Wesley - https://www.zbmath.org/?q=an:0175.03601
- [2] Bourbaki, N. Eléments de mathématique. Algèbre commutative. Chapitre 1 - 10. Berlin: Springer - https://www.zbmath.org/?q=an:1290.00001
- [3] Eisenbud, D. (1995). Commutative algebra. With a view toward algebraic geometry. Berlin: Springer-Verlag. (Graduate Texts in Mathematics, 150) - http://dx.doi.org/10.1007/978-1-4612-5350-1
- [4] Hochster, M. (2010). Lecture notes for Math 615, winter 2010 - http://www.math.lsa.umich.edu/~hochster/615W10/615.pdf
- [5] Krantz, S.G., and Parks, H.R. (2013). The implicit function theorem. History, theory, and applications. Reprint of the 2003 edition. New York: Birkhäuser/Springer - http://dx.doi.org/10.1007/978-1-4614-5981-1
- [6] Lang, S. (2002). Algebra. 3rd revised ed. New York: Springer-Verlag. (Graduate Texts in Mathematics, 211) - http://dx.doi.org/10.1007/978-1-4613-0041-0
- [7] Matsumura, H. (1989). Commutative ring theory. 2nd ed. Cambridge: Cambridge University Press. (Cambridge Studies in Advanced Mathematics, 8) - https://www.zbmath.org/?q=an:0666.13002
- [8] Milne, J.S. (1980). Étale cohomology. Princeton, New Jersey: Princeton University Press. (Princeton Mathematical Series, 33) - https://www.zbmath.org/?q=an:0433.14012
- [9] Ruiz, J.M. (1993). The basic theory of power series. Wiesbaden: Vieweg+Teubner Verlag. (Advanced Lectures in Mathematics) - http://www.springer.com/mathematics/geometry/book/978-3-528-06525-6
- [10] Scheidemann, V. (2005). Introduction to complex analysis in several variables. Basel: Birkhäuser Verlag - http://dx.doi.org/10.1007/3-7643-7491-8
- [11] Shafarevich, I.R. (1994). Basic algebraic geometry 1. Varieties in projective space. 3rd ed. Berlin: Springer - http://dx.doi.org/10.1007/978-3-642-37956-7
- [12] Swan, R.G. (1998). Neron-Popescu Desingularization. In M.-C. Kang (Ed.), Lectures in algebra and geometry. Proceedings of the international conference on algebra and geometry, National Taiwan University, Taipei, Taiwan, December 26-30, 1995 (pp. 135-192). Cambridge, MA: International Press - https://www.zbmath.org/?q=an:0954.13003
- [13] The Stacks Project Authors. Stacks Project - http://math.columbia.edu/algebraic_geometry/stacks-git