En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    The universal property of topological Hochschild homology

    Sélection Signaler une erreur
    Multi angle
    Auteurs : Harpaz, Yonatan (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : Topological Hochschild homology is a fundamental invariant of rings and ring spectra, related to algebraic K-theory via the celebrated Dennis-Bökstedt trace map KTHH. Blumberg, Gepner and Tabuada showed that algebraic K-theory becomes especially well-behaved when considered as an invariant of stable -categories, rather than just ring spectra: in that setting it can be described as the free additive invariant generated by the unit, that is, the initial additive functor under the the core -groupoid functor, corepresented by the unit of Catex. In this talk I will describe joint work with Thomas Nikolaus and Victor Saunier showing that THH similarly acquires a universal property when extended to stable -categories, when one allows in addition to take coefficients in an arbitrary bimodule. In particular, we view THH as a functor on the category TCat ex whose objects are pairs (C,M) where C is a stable -category and M is a bimodule, that is, a biexact functor Cop×C Spectra. We define a notion of being a trace-like invariant on TCat ex, which amounts to sending certain maps in TCat ex to equivalences. We then show that THH is the free exact trace-like invariant generated from the unit of TCatex, where exact means exact in the bimodule entry. At the same time, algebraic K-theory can also be extended to to TCatex, in the form of endomorphism K-theory. Comparing universal properties we then get that THH is universally obtained from endomorphism K-theory by forcing exactness. This yields a conceptual proof that THH is the first Goodwillie derivative of endomorphism K-theory, and can be used to extend the Dundas-Goodwillie-McCarthy theorem to the setting of stable -categories.

    Codes MSC :

      Informations sur la Vidéo

      Réalisateur : Petit, Jean
      Langue : Anglais
      Date de publication : 17/02/2023
      Date de captation : 24/01/2023
      Sous collection : Research talks
      arXiv category : Algebraic Topology ; Analysis of PDEs
      Domaine : Topology
      Format : MP4 (.mp4) - HD
      Durée : 01:05:50
      Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
      Download : https://videos.cirm-math.fr/2023-01-24-harpaz.mp4

    Informations sur la Rencontre

    Nom de la rencontre : Chromatic Homotopy, K-Theory and Functors / Homotopie chromatique, K-théorie et foncteurs
    Organisateurs de la rencontre : Ausoni, Christian ; Hess Bellwald, Kathryn ; Powell, Geoffrey ; Touzé, Antoine ; Vespa, Christine
    Dates : 23/01/2023 - 27/01/2023
    Année de la rencontre : 2023
    URL Congrès : https://conferences.cirm-math.fr/2339.html

    Données de citation

    DOI : 10.24350/CIRM.V.19997303
    Citer cette vidéo: Harpaz, Yonatan (2023). The universal property of topological Hochschild homology. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19997303
    URI : http://dx.doi.org/10.24350/CIRM.V.19997303

    Voir aussi

    Bibliographie



    Imagette Video

    Sélection Signaler une erreur
    Close