Authors : Touzet, Frédéric (Author of the conference)
CIRM (Publisher )
Abstract :
Let X be a projective manifold equipped with a codimension 1 (maybe singular) distribution whose conormal sheaf is assumed to be pseudoeffective. Basic examples of such distributions are provided by the kernel of a holomorphic one form, necessarily closed when the ambient is projective. More generally, due to a theorem of Jean-Pierre Demailly, a distribution with conormal sheaf pseudoeffective is actually integrable and thus defines a codimension 1 holomorphic foliation F. In this series of lectures, we would aim at describing the structure of such a foliation, especially in the non abundant case, i.e when F cannot be defined by a holomorphic one form (even passing through a finite cover). It turns out that \F is the pull-back of one of the "canonical foliations" on a Hilbert modular variety. This result remains valid for "logarithmic foliated pairs''.
Keywords : holomorphic foliations; pseudo-effective line bundle; abundance
MSC Codes :
37F75
- Holomorphic foliations and vector fields
Additional resources :
https://www.cirm-math.com/uploads/2/6/6/0/26605521/touzetconormal2cirm.pdf
Film maker : Hennenfent, Guillaume
Language : English
Available date : 15/05/2020
Conference Date : 06/05/2020
Subseries : Research School
arXiv category : Algebraic Geometry ; Dynamical Systems
Mathematical Area(s) : Algebraic & Complex Geometry
Format : MP4 (.mp4) - HD
Video Time : 00:40:29
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2020-05-06_Touzet_Part2.mp4
|
Event Title : Jean-Morlet Chair 2020 - Research School: Geometry and Dynamics of Foliations / Chaire Jean-Morlet 2020 - Ecole : Géométrie et dynamiques des feuilletages Event Organizers : Druel, Stéphane ; Pereira, Jorge Vitório ; Rousseau, Erwan Dates : 18/05/2020 - 22/05/2020
Event Year : 2020
Event URL : https://www.chairejeanmorlet.com/2251.html
DOI : 10.24350/CIRM.V.19631103
Cite this video as:
Touzet, Frédéric (2020). Codimension one foliation with pseudo-effective conormal bundle - lecture 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19631103
URI : http://dx.doi.org/10.24350/CIRM.V.19631103
|
See Also
Bibliography
- Kevin Corlette, Carlos Simpson. On the classification of rank-two representations of quasiprojective fundamental groups. Compos. Math. 144 (2008), no. 5, 1271–1331 - https://doi.org/10.1112/S0010437X08003618
- Jean-Pierre Demailly. On the Frobenius integrability of certain holomorphic p-forms. Complex geometry (Göttingen, 2000), 93–98, Springer, Berlin, 2002. - http://dx.doi.org/10.1007/978-3-642-56202-0_6
- Frédéric Touzet. On the structure of codimension 1 foliations with pseudoeffective conormal bundle. Foliation theory in algebraic geometry, 157–216, Simons Symp., Springer, Cham, 2016. - http://dx.doi.org/10.1007/978-3-319-24460-0_7
- Frédéric Touzet. Uniformisation de l'espace des feuilles de certains feuilletages de codimension un. Bull. Braz. Math. Soc. (N.S.) 44 (2013), no. 3, 351–391. - https://doi.org/10.1007/s00574-013-0017-7
- Marco Brunella. Birational geometry of foliations. IMPA Monographs, 1. Springer, Cham, 2015. xiv+130 pp. - http://dx.doi.org/10.1007/978-3-319-14310-1