En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    Beyond Bowen specification property - lecture 1

    Sélection Signaler une erreur
    Multi angle
    Auteurs : Thompson, Daniel J. (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : These lectures are a mostly self-contained sequel to Vaughn Climenhaga's talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, the question of when the “pressure gap” hypothesis can be verified becomes crucial. I will sketch our proof of the “entropy gap”, which is a new direct constructive proof of a result by Knieper. I will also describe new joint work with Ben Call, which shows that all the unique equilibrium states provided above have the Kolmogorov property. When the manifold has dimension at least 3, this is a new result even for the Knieper-Bowen-Margulis measure of maximal entropy. The common thread that links all of these arguments is that they rely on weak orbit specification properties in the spirit of Bowen.

    Keywords : equilibrium states; geodesic flows; topological pressure

    Codes MSC :
    37C40 - Smooth ergodic theory, invariant measures
    37D25 - Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
    37D35 - Thermodynamic formalism, variational principles, equilibrium states
    37D40 - Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)

    Ressources complémentaires :
    https://www.cirm-math.fr/RepOrga/2264/Notes/Thompson-1-notes.pdf

    Informations sur la Rencontre

    Nom de la rencontre : Dynamique au-delà de l'hyperbolicité uniforme / Dynamics Beyond Uniform Hyperbolicity
    Organisateurs de la rencontre : Bonatti, Christian ; Buzzi, Jérôme ; Crovisier, Sylvain ; Gan, Shaobo ; Pacifico, Maria José
    Dates : 13/05/2019 - 24/05/2019
    Année de la rencontre : 2019
    URL Congrès : https://conferences.cirm-math.fr/1947.html

    Données de citation

    DOI : 10.24350/CIRM.V.19525503
    Citer cette vidéo: Thompson, Daniel J. (2019). Beyond Bowen specification property - lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19525503
    URI : http://dx.doi.org/10.24350/CIRM.V.19525503

    Voir aussi

    Bibliographie

    • BALLMANN, Werner. Axial isometries of manifolds of non-positive curvature. Mathematische Annalen, 1982, vol. 259, no 1, p. 131-144. - https://doi.org/10.1007/BF01456836

    • BALLMANN, Werner. Lectures on Spaces of Nonpositive Curvature. Oberwolfach Seminars, vol. 25, 1995. - https://doi.org/10.1007/978-3-0348-9240-7

    • BURNS, Keith, CLIMENHAGA, Vaughn, FISHER, Todd, et al. Unique equilibrium states for geodesic flows in nonpositive curvature. Geometric and Functional Analysis, 2018, vol. 28, no 5, p. 1209-1259. - https://arxiv.org/abs/1703.10878

    • CLIMENHAGA, Vaughn et THOMPSON, Daniel J. Unique equilibrium states for flows and homeomorphisms with non-uniform structure. Advances in Mathematics, 2016, vol. 303, p. 745-799. - https://arxiv.org/abs/1505.03803

    • EBERLEIN, Patrick. Geometry of nonpositively curved manifolds. University of Chicago Press, 1996. -

    • EBERLEIN, Patrick. Geodesic flows in manifolds of nonpositive curvature, Smooth ergodictheory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., 2001, vol. 69, p. 525-571. - https://doi.org/10.1090/pspum/069

    • GELFERT, Katrin et SCHAPIRA, Barbara. Pressures for geodesic flows of rank one manifolds. Nonlinearity, 2014, vol. 27, no 7, p. 1575. - https://hal.archives-ouvertes.fr/hal-00881421/

    • GERBER, Marlies, WILKINSON, Amie, et al. Hölder regularity of horocycle foliations. J. Differential Geom, 1999, vol. 52, no 1, p. 41-72. - https://doi.org/10.4310/jdg/1214425216

    • KNIEPER, Gerhard. The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds. 1997. - https://doi.org/10.2307/120995



    Sélection Signaler une erreur
    Close