En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Manage my selections

  • z

    Destination de la recherche

    Raccourcis

    1

    The Rudin-Shapiro function in finite fields

    Bookmarks Report an error
    Virtualconference
    Authors : Dartyge, Cécile (Author of the conference)
    CIRM (Publisher )

    00:00
    00:00
     

    Abstract : Let q=pr, where p is a prime number and ß=(β1,,βr) be a basis of Fq over Fp.
    Any ξFq has a unique representation ξ=i=1rxiβi with x1,,xrFp.
    The coefficients x1,,xr are called the digits of ξ with respect to the basis ß.
    The analog of the Rudin-Shapiro function is R(ξ)=x1x2++xr1xr. For fFq[X], non constant and cFp, we obtain some formulas for the number of solutions in Fq of R(f(ξ))=c. The proof uses the Hooley-Katz bound for the number of zeros of polynomials in Fp with several variables.

    This is a joint work with László Mérai and Arne Winterhof.

    Keywords : finite fields; digit sums; Hooley-Katz theorem; polynomial equations; Rudin-Shapiro function

    MSC Codes :
    11A63 - Radix representation; digital problems
    11T23 - Exponential sums
    11T30 - Structure theory

      Information on the Video

      Film maker : Hennenfent, Guillaume
      Language : English
      Available date : 01/12/2020
      Conference Date : 27/11/2020
      Subseries : Research talks
      arXiv category : Number Theory
      Mathematical Area(s) : Number Theory
      Format : MP4 (.mp4) - HD
      Video Time : 00:41:07
      Targeted Audience : Researchers
      Download : https://videos.cirm-math.fr/2020-11-27_Dartyge.mp4

    Information on the Event

    Event Title : Jean-Morlet Chair 2020 - Conference: Diophantine Problems, Determinism and Randomness / Chaire Jean-Morlet 2020 - Conférence : Problèmes diophantiens, déterminisme et aléatoire
    Event Organizers : Rivat, Joël ; Tichy, Robert
    Dates : 21/11/2020 - 27/11/2020
    Event Year : 2020
    Event URL : https://www.chairejeanmorlet.com/2256.html

    Citation Data

    DOI : 10.24350/CIRM.V.19686303
    Cite this video as: Dartyge, Cécile (2020). The Rudin-Shapiro function in finite fields. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19686303
    URI : http://dx.doi.org/10.24350/CIRM.V.19686303

    See Also

    Bibliography



    Bookmarks Report an error
    Close