En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    On robustness and local differential privacy

    Sélection Signaler une erreur
    Multi angle
    Auteurs : Berrett, Thomas (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : It is of soaring demand to develop statistical analysis tools that are robust against contamination as well as preserving individual data owners' privacy. In spite of the fact that both topics host a rich body of literature, to the best of our knowledge, we are the first to systematically study the connections between the optimality under Huber's contamination model and the local differential privacy (LDP) constraints. We start with a general minimax lower bound result, which disentangles the costs of being robust against Huber's contamination and preserving LDP. We further study four concrete examples: a two-point testing problem, a potentially-diverging mean estimation problem, a nonparametric density estimation problem and a univariate median estimation problem. For each problem, we demonstrate procedures that are optimal in the presence of both contamination and LDP constraints, comment on the connections with the state-of-the-art methods that are only studied under either contamination or privacy constraints, and unveil the connections between robustness and LDP via partially answering whether LDP procedures are robust and whether robust procedures can be efficiently privatised. Overall, our work showcases a promising prospect of joint study for robustness and local differential privacy.
    This is joint work with Mengchu Li and Yi Yu.

    Keywords : Huber's contamination model; local differential privacy; minimax optimality

    Codes MSC :
    62C20 - Minimax procedures
    62G10 - Nonparametric hypothesis testing
    62G35 - Robustness

      Informations sur la Vidéo

      Réalisateur : Récanzone, Luca
      Langue : Anglais
      Date de publication : 08/01/2024
      Date de captation : 21/12/2023
      Sous collection : Research talks
      arXiv category : Statistics
      Domaine : Probability & Statistics
      Format : MP4 (.mp4) - HD
      Durée : 00:38:59
      Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
      Download : https://videos.cirm-math.fr/2023-12-21_Berrett.mp4

    Informations sur la Rencontre

    Nom de la rencontre : Meeting in Mathematical Statistics: Statistical thinking in the age of AI : robustness, fairness and privacy / Rencontre de Statistique Mathématique
    Organisateurs de la rencontre : Klopp, Olga ; Ndaoud, Mohamed ; Pouet, Christophe ; Rakhlin, Alexander
    Dates : 18/12/2023 - 22/12/2023
    Année de la rencontre : 2023
    URL Congrès : https://conferences.cirm-math.fr/3087.html

    Données de citation

    DOI : 10.24350/CIRM.V.20119903
    Citer cette vidéo: Berrett, Thomas (2023). On robustness and local differential privacy. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20119903
    URI : http://dx.doi.org/10.24350/CIRM.V.20119903

    Voir aussi

    Bibliographie

    • LI, Mengchu, BERRETT, Thomas B., et YU, Yi. On robustness and local differential privacy. The Annals of Statistics, 2023, vol. 51, no 2, p. 717-737. - http://dx.doi.org/10.1214/23-AOS2267



    Imagette Video

    Sélection Signaler une erreur
    Close