En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 11R32 4 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

How to prove that Galois groups are large - Serre, Jean-Pierre (Author of the conference) | CIRM H

Multi angle

The Galois groups of the title are those which are associated with elliptic curves over number fields; I shall explain the methods which were introduced in the 1960's in order to prove that they are large, and the questions about them which are still open fifty years later.
Galois - elliptic - l-adic - Tate - proofs

11G05 ; 11R32

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Braids and Galois groups - Matzat, B. Heinrich (Author of the conference) | CIRM

Post-edited

arithmetic fundamental group - Galois theory - braid groups - rigid analytic geometry - rigidity of finite groups

12F12 ; 11R32 ; 20F36 ; 20D08

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
hyperelliptic curves - Belyi functions - absolute Galois group - Belyi polynomials - marked varieties - moduli spaces

11R32 ; 14J10 ; 14J29 ; 14Mxx

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Unramified graph covers of finite degree - Li, Winnie (Author of the conference) | CIRM H

Post-edited

Given a finite connected undirected graph $X$, its fundamental group plays the role of the absolute Galois group of $X$. The familiar Galois theory holds in this setting. In this talk we shall discuss graph theoretical counter parts of several important theorems for number fields. Topics include
(a) Determination, up to equivalence, of unramified normal covers of $X$ of given degree,
(b) Criteria for Sunada equivalence,
(c) Chebotarev density theorem.
This is a joint work with Hau-Wen Huang.[-]
Given a finite connected undirected graph $X$, its fundamental group plays the role of the absolute Galois group of $X$. The familiar Galois theory holds in this setting. In this talk we shall discuss graph theoretical counter parts of several important theorems for number fields. Topics include
(a) Determination, up to equivalence, of unramified normal covers of $X$ of given degree,
(b) Criteria for Sunada equivalence,
(c) Chebotarev density ...[+]

05C25 ; 05C50 ; 11R32 ; 11R44 ; 11R45

Bookmarks Report an error