En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14Exx 2 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
For complex projective manifolds $X$ of general type, Lang claimed the equivalence between three fields: birational geometry, complex hyperbolicity, and arithmetic. We extend this equivalence to arbitrary $X$'s by introducing the (antithetical) class of “Special” manifolds and constructing the “Core” fibration, the unique one with special fibres and general type “orbifold” base. We conjecture that special manifolds —which are defined algebro-geometrically by a certain non-positivity of their cotangent bundles— are also exactly the ones having Zariski-dense entire curves (so violating the GGL property). We shall give (j.w. J. Winkelmann) some examples supporting this conjecture. The arithmetic aspect will be skipped.[-]
For complex projective manifolds $X$ of general type, Lang claimed the equivalence between three fields: birational geometry, complex hyperbolicity, and arithmetic. We extend this equivalence to arbitrary $X$'s by introducing the (antithetical) class of “Special” manifolds and constructing the “Core” fibration, the unique one with special fibres and general type “orbifold” base. We conjecture that special manifolds —which are defined al...[+]

32E10 ; 32F45 ; 32J27 ; 55Q05 ; 14Exx ; 14Dxx

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Viehweg and Zuo obtained several results concerning the moduli number in smooth families of polarized varieties with semi-ample canonical class over a quasiprojective base. These results led Viehweg to conjecture that the base of a family of maximal variation is of log-general type, and the conjecture has been recently proved by Campana and Paun.
From the “opposite” side, Taji proved that a smooth projective family over a special (in the sense of Campana) quasiprojective base is isotrivial.
We extend Taji's theorem to quasismooth families, that is, families of leaves of compact foliations without singularities. This is a joint work with F. Campana[-]
Viehweg and Zuo obtained several results concerning the moduli number in smooth families of polarized varieties with semi-ample canonical class over a quasiprojective base. These results led Viehweg to conjecture that the base of a family of maximal variation is of log-general type, and the conjecture has been recently proved by Campana and Paun.
From the “opposite” side, Taji proved that a smooth projective family over a special (in the sense ...[+]

32Q10 ; 14D22 ; 14J10 ; 14Dxx ; 14Exx ; 32J27 ; 32S65

Bookmarks Report an error