En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35B34 4 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We prove a quantum Sabine law for the location of resonances in transmission problems. In this talk, our main applications are to scattering by strictly convex, smooth, transparent obstacles and highly frequency dependent delta potentials. In each case, we give a sharp characterization of the resonance free regions in terms of dynamical quantities. In particular, we relate the imaginary part of resonances to the chord lengths and reflectivity coefficients for the ray dynamics and hence give a quantum version of the Sabine law from acoustics.[-]
We prove a quantum Sabine law for the location of resonances in transmission problems. In this talk, our main applications are to scattering by strictly convex, smooth, transparent obstacles and highly frequency dependent delta potentials. In each case, we give a sharp characterization of the resonance free regions in terms of dynamical quantities. In particular, we relate the imaginary part of resonances to the chord lengths and reflectivity ...[+]

35P25 ; 35B34 ; 35Q40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Microlocal analysis for Kerr-de Sitter black holes - Vasy, Andras (Author of the conference) | CIRM H

Post-edited

In this lecture I will describe a framework for the Fredholm analysis of non-elliptic problems both on manifolds without boundary and manifolds with boundary, with a view towards wave propagation on Kerr-de-Sitter spaces, which is the key analytic ingredient for showing the stability of black holes (see Peter Hintz' lecture). This lecture focuses on the general setup such as microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as (potentially) normally hyperbolic trapping, as well as the role of resonances.[-]
In this lecture I will describe a framework for the Fredholm analysis of non-elliptic problems both on manifolds without boundary and manifolds with boundary, with a view towards wave propagation on Kerr-de-Sitter spaces, which is the key analytic ingredient for showing the stability of black holes (see Peter Hintz' lecture). This lecture focuses on the general setup such as microlocal ellipticity, real principal type propagation, radial points ...[+]

35A21 ; 35A27 ; 35B34 ; 35B40 ; 58J40 ; 58J47 ; 83C35 ; 83C57

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

A microlocal toolbox for hyperbolic dynamics - Dyatlov, Semyon (Author of the conference) | CIRM H

Post-edited

I will discuss recent applications of microlocal analysis to the study of hyperbolic flows, including geodesic flows on negatively curved manifolds. The key idea is to view the equation $(X + \lambda)u = f$ , where $X$ is the generator of the flow, as a scattering problem. The role of spatial infinity is taken by the infinity in the frequency space. We will concentrate on the case of noncompact manifolds, featuring a delicate interplay between shift to higher frequencies and escaping in the physical space. I will show meromorphic continuation of the resolvent of $X$; the poles, known as Pollicott-Ruelle resonances, describe exponential decay of correlations. As an application, I will prove that the Ruelle zeta function continues meromorphically for flows on non-compact manifolds (the compact case, known as Smale's conjecture, was recently settled by Giulietti-Liverani- Pollicott and a simple microlocal proof was given by Zworski and the speaker). Joint work with Colin Guillarmou.[-]
I will discuss recent applications of microlocal analysis to the study of hyperbolic flows, including geodesic flows on negatively curved manifolds. The key idea is to view the equation $(X + \lambda)u = f$ , where $X$ is the generator of the flow, as a scattering problem. The role of spatial infinity is taken by the infinity in the frequency space. We will concentrate on the case of noncompact manifolds, featuring a delicate interplay between ...[+]

37D50 ; 53D25 ; 37D20 ; 35B34 ; 35P25

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study the survival probability associated with a semiclassical matrix Schrödinger operator that models the predissociation of a general molecule in the Born-Oppenheimer approximation. We show that it is given by its usual time-dependent exponential contribution, up to a reminder term that is small in the semiclassical parameter and for which we find the main contribution. The result applies in any dimension, and in presence of a number of resonances that may tend to infinity as the semiclassical parameter tends to 0.
This is a joint work with Ph. Briet.[-]
We study the survival probability associated with a semiclassical matrix Schrödinger operator that models the predissociation of a general molecule in the Born-Oppenheimer approximation. We show that it is given by its usual time-dependent exponential contribution, up to a reminder term that is small in the semiclassical parameter and for which we find the main contribution. The result applies in any dimension, and in presence of a number of ...[+]

35B34 ; 35P15 ; 35J10 ; 47A75 ; 81Q15

Bookmarks Report an error