En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 37D50 13 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Billiard and rigid rotation - Treschev, Dmitry (Author of the conference) | CIRM H

Multi angle

Can a billiard map be locally conjugated to a rigid rotation? We prove that the answer to this question is positive in the category of formal series. We also present numerical evidence that for "good" rotation angles the answer is also positive in an analytic category.
billiard systems # integrable Hamiltonian systems # normal form convergence # small divisors # elliptic fixed point # analytic conjugacy

37D50 ; 70H06

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will present a geometric criterion for the ergodicity of the billiard flow in a polygon with non-rational angles and discuss its application to the Diophantine case.

37D40 ; 37D50 ; 30F10 ; 30F60 ; 32G15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Flat surfaces and combinatorics - Goujard, Élise (Author of the conference) | CIRM H

Multi angle

Billiards in polygons are related to dynamics of the linear flow on flat surfaces. Through some examples of counting problems on flat surfaces and on moduli spaces of flat surfaces, we will see how combinatorics can lead to interesting dynamical results in this setting.

30F30 ; 32G15 ; 37D50

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Tiling billiards is a dynamical system where beams of light refract through planar tilings. It turns out that, for a regular tiling of the plane by congruent triangles, the light trajectories can be described by interval exchange transformations. I will explain this surprising correspondence, give related results, and show computer simulations of the system.

37D50 ; 37B50

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A perspective on the The Fibonacci trace map - Damanik, David (Author of the conference) | CIRM H

Multi angle

In this talk we explain how the Fibonacci trace map arises from the Fibonacci substitution and leads to a unified framework in which a variety of models can be studied. We discuss the associated foliations, hyperbolic sets, stable and unstable manifolds, and how the intersections of the stable manifolds with the model-dependent curve of initial conditions allow one to translate dynamical into spectral results.

81Q10 ; 81Q35 ; 37D20 ; 37D50

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
​We investigate the diffusion and statistical properties of Lorentz gas with cusps at flat points. This is a modification of dispersing billiards with cusps. The decay rates are proven to depend on the degree of the flat points, which varies from $n^{-a}$, for $ a\in (0,\infty)$. The stochastic processes driven by these systems enjoy stable law and have super-diffusion driven by Lévy process. This is a joint work with Paul Jung and Françoise Pène.[-]
​We investigate the diffusion and statistical properties of Lorentz gas with cusps at flat points. This is a modification of dispersing billiards with cusps. The decay rates are proven to depend on the degree of the flat points, which varies from $n^{-a}$, for $ a\in (0,\infty)$. The stochastic processes driven by these systems enjoy stable law and have super-diffusion driven by Lévy process. This is a joint work with Paul Jung and Françoise ...[+]

37D50 ; 37A25 ; 60F05 ; 37D25

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We present a convenient joint generalization of mixing and the local version of the central limit theorem (MLLT) for probability preserving dynamical systems. We verify that MLLT holds for several examples of hyperbolic systems by reviewing old results for maps and presenting new results for flows. Then we discuss applications such as proving various mixing properties of infinite measure preserving systems. Based on joint work with Dmitry Dolgopyat.[-]
We present a convenient joint generalization of mixing and the local version of the central limit theorem (MLLT) for probability preserving dynamical systems. We verify that MLLT holds for several examples of hyperbolic systems by reviewing old results for maps and presenting new results for flows. Then we discuss applications such as proving various mixing properties of infinite measure preserving systems. Based on joint work with Dmitry ...[+]

37A50 ; 37D50 ; 60F05 ; 37D20

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will discuss an approach to the statistical properties of two-dimensional dispersive billiards (mostly discrete-time) using transfer operators acting on anisotropic Banach spaces of distributions. The focus of this part will be our recent work with Mark Demers on the measure of maximal entropy but we will also survey previous results by Demers, Zhang, Liverani, etc on the SRB measure.

37D50 ; 37C30 ; 37B40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will discuss an approach to the statistical properties of two-dimensional dispersive billiards (mostly discrete-time) using transfer operators acting on anisotropic Banach spaces of distributions. The focus of this part will be our recent work with Mark Demers on the measure of maximal entropy but we will also survey previous results by Demers, Zhang, Liverani, etc on the SRB measure.

37D50 ; 37C30 ; 37B40

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will discuss an approach to the statistical properties of two-dimensional dispersive billiards (mostly discrete-time) using transfer operators acting on anisotropic Banach spaces of distributions. The focus of this part will be our recent work with Mark Demers on the measure of maximal entropy but we will also survey previous results by Demers, Zhang, Liverani, etc on the SRB measure.

37D50 ; 37C30 ; 37B40

Bookmarks Report an error