En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 46B04 3 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Kazhdan projections - Drutu, Cornelia (Author of the conference) | CIRM H

Multi angle

Kazhdan projections are usually considred objects relevant in operator algebras. In particular, they played a central part in the construction of counter-examples to the Baum-Connes conjecture.
In this talk I shall explain how, in the general setting of a family of representations on Banach spaces, one can reformulate the Kazhdan property "almost invariant implies invariant vectors" in terms of Kazhdan projections, providing also an explicit formula of the latter, using Markov operators associated to a random walk on the group. I will then explain some applications of this new approach.
This is joint work with Piotr Nowak.[-]
Kazhdan projections are usually considred objects relevant in operator algebras. In particular, they played a central part in the construction of counter-examples to the Baum-Connes conjecture.
In this talk I shall explain how, in the general setting of a family of representations on Banach spaces, one can reformulate the Kazhdan property "almost invariant implies invariant vectors" in terms of Kazhdan projections, providing also an explicit ...[+]

20F65 ; 46B04

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Asymptotic tensor powers of Banach spaces - Aubrun, Guillaume (Author of the conference) | CIRM H

Multi angle

Motivated by considerations from quantum information theory, we study the asymptotic behaviour of large tensor powers of normed spaces and of operators between them. We define the tensor radius of a finite-dimensional normed space $\mathrm{X}$ as the limit of the sequence $A_{k}^{1 / k}$, where $A_{k}$ is the equivalence constant between the projective and injective norms on $X^{\otimes} k$. We show in particular that Euclidean spaces are characterized by the property that their tensor radius equals their dimension.
Joint work with Alexander Müller-Hermes, arXiv:2110.12828[-]
Motivated by considerations from quantum information theory, we study the asymptotic behaviour of large tensor powers of normed spaces and of operators between them. We define the tensor radius of a finite-dimensional normed space $\mathrm{X}$ as the limit of the sequence $A_{k}^{1 / k}$, where $A_{k}$ is the equivalence constant between the projective and injective norms on $X^{\otimes} k$. We show in particular that Euclidean spaces are ...[+]

46B04

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The Daugavet equation for Lipschitz operators - Werner, Dirk (Author of the conference) | CIRM

Multi angle

We study the Daugavet equation
$\parallel Id+T\parallel$ $=1$ $+$ $\parallel T\parallel$
for Lipschitz operators on a Banach space. For this we introduce a substitute for the concept of slice for the case of non-linear Lipschitz functionals and transfer some results about the Daugavet and the alternative Daugavet equations previously known only for linear operators to the non-linear case.

46B04 ; 46B80 ; 46B22 ; 47A12

Bookmarks Report an error