En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 46L54 8 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
One of the most important question in Quantum Information Theory was to figure out whether the so-called Minimum Output Entropy (MOE) was additive. In this talk I will start by defining the counter-example originally built by Belinschi, Collins and Nechita. Then I will explain how with the help of a novel strategy, we managed with Collins to compute concentration estimate on the probability that the MOE is non-additive and how it yielded some explicit bounds for the dimension of spaces where violation of the MOE occurs. Finally, I will talk more in detail about this novel strategy which consists in interpolating random matrices and free operators with the help of free stochastic calculus.[-]
One of the most important question in Quantum Information Theory was to figure out whether the so-called Minimum Output Entropy (MOE) was additive. In this talk I will start by defining the counter-example originally built by Belinschi, Collins and Nechita. Then I will explain how with the help of a novel strategy, we managed with Collins to compute concentration estimate on the probability that the MOE is non-additive and how it yielded some ...[+]

60B20 ; 46L54 ; 52A22 ; 94A17

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will talk about a transformation involving double monotone Hurwitz numbers, which has several interpretations: transformation from maps to fully simple maps, passing from cumulants to free cumulants in free probability, action of an operator in the Fock space, symplectic exchange in topological recursion. In combination with recent work of Bychkov, Dunin-Barkowski, Kazarian and Shadrin, we deduce functional relations relating the generating series of higher order cumulants and free cumulants. This solves a 15-year old problem posed by Collins, Mingo, Sniady and Speicher (the first order is Voiculescu R-transform). This leads us to a general theory of 'surfaced' freeness, which captures the all order asymptotic expansions in unitary invariant random matrix models, which can be described both from the combinatorial and the analytic perspective.
Based on https://arxiv.org/abs/2112.12184 with Séverin Charbonnier, Elba Garcia-Failde, Felix Leid and Sergey Shadrin.[-]
I will talk about a transformation involving double monotone Hurwitz numbers, which has several interpretations: transformation from maps to fully simple maps, passing from cumulants to free cumulants in free probability, action of an operator in the Fock space, symplectic exchange in topological recursion. In combination with recent work of Bychkov, Dunin-Barkowski, Kazarian and Shadrin, we deduce functional relations relating the generating ...[+]

46L54 ; 15B52 ; 16R60 ; 06A07 ; 05A18

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider independent Hermitian heavy-tailed random matrices. Our model includes the Lévy matrices as well as sparse random matrices with O(1) non-zero entries per row. By representing these matrices as weighted graphs, we derive a large deviation principle for key macroscopic observables. Specifically, we focus on the empirical distribution of eigenvalues, the joint neighborhood distribution, and the joint traffic distribution. As an application, we define a notion of microstates entropy for traffic distribution which is additive under free traffic convolution.[-]
We consider independent Hermitian heavy-tailed random matrices. Our model includes the Lévy matrices as well as sparse random matrices with O(1) non-zero entries per row. By representing these matrices as weighted graphs, we derive a large deviation principle for key macroscopic observables. Specifically, we focus on the empirical distribution of eigenvalues, the joint neighborhood distribution, and the joint traffic distribution. As an ...[+]

60B20 ; 60F10 ; 46L54

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will present a recent amazing new approach to norm convergence of random matrices due to Chen, Garza Vargas, Tropp, and van Handel, and the way Michael Magee and I apply and expand it, together with fine topological expansion, to obtain norm convergence for random matrix models coming from representations of SU(n) of quasi-exponential dimension.

15A52 ; 46L54 ; 46L05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
- Normalized characters of the symmetric groups,
- Kerov polynomials and Kerov positivity conjecture,
- Stanley character polynomials and multirectangular coordinates of Young diagrams,
- Stanley character formula and maps,
- Jack characters
- characterization, partial results.

05A15 ; 05D05 ; 46L54 ; 43A65 ; 20E22

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Free probability and random matrices - Biane, Philippe (Author of the conference) | CIRM H

Multi angle

I will explain how free probability, which is a theory of independence for non-commutative random variables, can be applied to understand the spectra of various models of random matrices.

15B52 ; 60B20 ; 46L53 ; 46L54

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Over the last couple of years, it has become evident that matrix-valued semicircular elements establish strong links between free probability theory and noncommutative algebra. Another surprising connection of this kind was found in a recently finished project with Roland Speicher. We have shown that the Fuglede-Kadison determinant of an arbitrary matrix-valued semicircular element is essentially given by the capacity of its associated covariance map. In addition, we have improved a lower bound by Garg, Gurvits, Oliveira, and Widgerson on this capacity, by making it dimension-independent. Besides analytic tools from operator-valued free probability, these are the crucial ingredients in some novel algorithmic solution to the noncommutative Edmonds' problem which we described in collaboration with Johannes Hoffmann. In my talk, I will present our work and provide the background on free probability and noncommutative algebra required for this purpose.[-]
Over the last couple of years, it has become evident that matrix-valued semicircular elements establish strong links between free probability theory and noncommutative algebra. Another surprising connection of this kind was found in a recently finished project with Roland Speicher. We have shown that the Fuglede-Kadison determinant of an arbitrary matrix-valued semicircular element is essentially given by the capacity of its associated ...[+]

46L54 ; 65J15 ; 12E15 ; 15A22

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We show that finite rank perturbations of certain random matrices fit in the framework of infinitesimal (type B) asymptotic freeness. This can be used to explain the appearance of free harmonic analysis (such as subordination functions appearing in additive free convolution) in computations of outlier eigenvalues in spectra of such matrices.

46L54 ; 15B52

Bookmarks Report an error