En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 47F05 2 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Spectral analysis in sheared waveguides - Verri, Alessandra (Author of the conference) | CIRM H

Multi angle

Let $\Omega \subset \mathbb{R}^3$ be a sheared waveguide, i.e., $\Omega$ is built by translating a cross-section (an arbitrary bounded connected open set of $\mathbb{R}^2$ ) in a constant direction along an unbounded spatial curve. Consider $-\Delta_{\Omega}^D$ the Dirichlet Laplacian operator in $\Omega$. Under the condition that the tangent vector of the reference curve admits a finite limit at infinity, we find the essential spectrum of $-\Delta_{\Omega}^D$. After that, we state sufficient conditions that give rise to a non-empty discrete spectrum for $-\Delta_{\Omega}^D$. Finally, in case the cross section translates along a broken line in $\mathbb{R}^3$, we prove that the discrete spectrum of $-\Delta_{\Omega}^D$ is finite, furthermore, we show a particular geometry for $\Omega$ which implies that the total multiplicity of the discrete spectrum is equals 1.[-]
Let $\Omega \subset \mathbb{R}^3$ be a sheared waveguide, i.e., $\Omega$ is built by translating a cross-section (an arbitrary bounded connected open set of $\mathbb{R}^2$ ) in a constant direction along an unbounded spatial curve. Consider $-\Delta_{\Omega}^D$ the Dirichlet Laplacian operator in $\Omega$. Under the condition that the tangent vector of the reference curve admits a finite limit at infinity, we find the essential spectrum of ...[+]

49R05 ; 47A75 ; 47F05

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Nigel Kalton played a prominent role in the development of a holomorphic functional calculus for unbounded sectorial operators. He showed, in particular, that such a calculus is highly unstable under perturbation: given an operator $D$ with a bounded functional calculus, fairly stringent conditions have to be imposed on a perturbation $B$ for $DB$ to also have a bounded functional calculus. Nigel, however, often mentioned that, while these results give a fairly complete picture of what is true at a pure operator theoretic level, more should be true for special classes of differential operators. In this talk, I will briefly review Nigel's general results before focusing on differential operators with perturbed coefficients acting on $L_p(\mathbb{R}^{n})$. I will present, in particular, recent joint work with $D$. Frey and A. McIntosh that demonstrates how stable the functional calculus is in this case. The emphasis will be on trying, as suggested by Nigel, to understand what makes differential operators so special from an operator theoretic point of view.[-]
Nigel Kalton played a prominent role in the development of a holomorphic functional calculus for unbounded sectorial operators. He showed, in particular, that such a calculus is highly unstable under perturbation: given an operator $D$ with a bounded functional calculus, fairly stringent conditions have to be imposed on a perturbation $B$ for $DB$ to also have a bounded functional calculus. Nigel, however, often mentioned that, while these ...[+]

47F05 ; 47A60 ; 42B30 ; 42B37

Bookmarks Report an error