En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 52B05 1 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Random mosaics generated by stationary Poisson hyperplane processes in Euclidean space are a much studied object of Stochastic Geometry, and their typical cells or zero cells belong to the most prominent models of random polytopes. After a brief review, we turn to analogues in spherical space or, roughly equivalently, in a conic setting. A given number of i.i.d. random hyperplanes through the origin in $\mathbb{R}^d$ generate a tessellation of $\mathbb{R}^d$ into polyhedral cones. The typical cone of this tessellation, called a 'random Schläfli cone', is the object of our study. We provide first moments and mixed second moments of some geometric functionals, and compute probabilities of non-trivial intersection of a random Schläfli cone with a fixed polyhedral cone, or of two independent random Schläfli cones.

Parts are joint work with Matthias Reitzner, others with Daniel Hug.[-]
Random mosaics generated by stationary Poisson hyperplane processes in Euclidean space are a much studied object of Stochastic Geometry, and their typical cells or zero cells belong to the most prominent models of random polytopes. After a brief review, we turn to analogues in spherical space or, roughly equivalently, in a conic setting. A given number of i.i.d. random hyperplanes through the origin in $\mathbb{R}^d$ generate a tessellation of ...[+]

52A22 ; 60D05 ; 52A55 ; 52C35 ; 52B05 ; 51M20

Bookmarks Report an error