En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 55P48 2 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
There is a family of symplectic representations of the braid groups given by the "integral reduced Burau representation". I will explain a calculation of the stable homology of the braid groups with coefficients in this Burau representation, composed with any algebraic rational representation of the symplectic group. The answer has important consequences in analytic number theory. (Joint with Bergström-Diaconu-Westerland.)

14H10 ; 55P48 ; 20F36 ; 18M70

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The classical Barratt-Priddy-Quillen theorem states that the $K$-theory spectrum of the category of finite sets and isomorphisms is equivalent to the sphere spectrum. A more general statement is that for an unbased space $X$, the suspension spectrum $\Sigma_{+}^{\infty} X$ is equivalent to the spectrum associated to the free $E_{\infty}$ space on $X$. In this talk we will present a categorical construction of the latter that is lax monoidal. This compatibility with multiplicative structures is necessary when using this functor to change enrichments, as in the work of Guillou-May.This is joint work with Bert Guillou, Peter May and Mona Merling.[-]
The classical Barratt-Priddy-Quillen theorem states that the $K$-theory spectrum of the category of finite sets and isomorphisms is equivalent to the sphere spectrum. A more general statement is that for an unbased space $X$, the suspension spectrum $\Sigma_{+}^{\infty} X$ is equivalent to the spectrum associated to the free $E_{\infty}$ space on $X$. In this talk we will present a categorical construction of the latter that is lax monoidal. ...[+]

19D23 ; 19L47 ; 55P48

Bookmarks Report an error