Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This talk will be devoted to the usage of new discretization schemes on polyhedral meshes in an industrial context. These discretizations called CDO [1, 2] (Compatible Discrete Operator) or Hybrid High Order [3,4] (HHO) schemes have been recently implemented in Code Saturne [5]. Code Saturne is an open-source code developed at EDF R&D aiming at simulating single-phase flows. First, the advantages of robust polyhedral discretizations will be recalled. Then, the underpinning principles of CDO schemes will be presented as well as some applications: diffusion equations, transport problems, groundwater flows or the discretization of the Stokes equations. High Performance Computing (HPC) aspects will be also discussed as it is an essential feature in an industrial context either to address complex and large computational domains or to get a quick answer. Some highlights on the main outlooks will be given to conclude.
[-]
This talk will be devoted to the usage of new discretization schemes on polyhedral meshes in an industrial context. These discretizations called CDO [1, 2] (Compatible Discrete Operator) or Hybrid High Order [3,4] (HHO) schemes have been recently implemented in Code Saturne [5]. Code Saturne is an open-source code developed at EDF R&D aiming at simulating single-phase flows. First, the advantages of robust polyhedral discretizations will be ...
[+]
65Nxx ; 65N50 ; 76S05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk we first quickly present a classical and simple model used to describe flow in porous media (based on Darcy's Law). The high heterogeneity of the media and the lack of data are taken into account by the use of random permability fields. We then present some mathematical particularities of the random fields frequently used for such applications and the corresponding theoretical and numerical issues.
After giving a short overview of various applications of this basic model, we study in more detail the problem of the contamination of an aquifer by migration of pollutants. We present a numerical method to compute the mean spreading of a diffusive set of particles representing a tracer plume in an advecting flow field. We deal with the uncertainty thanks to a Monte Carlo method and use a stochastic particle method to approximate the solution of the transport-diffusion equation. Error estimates will be established and numerical results (obtained by A.Beaudoin et al. using PARADIS Software) will be presented. In particular the influence of the molecular diffusion and the heterogeneity on the asymptotic longitudinal macrodispersion will be investigated thanks to numerical experiments. Studying qualitatively and quantitatively the influence of molecular diffusion, correlation length and standard deviation is an important question in hydrogeolgy.
[-]
In this talk we first quickly present a classical and simple model used to describe flow in porous media (based on Darcy's Law). The high heterogeneity of the media and the lack of data are taken into account by the use of random permability fields. We then present some mathematical particularities of the random fields frequently used for such applications and the corresponding theoretical and numerical issues.
After giving a short overview of ...
[+]
76S05 ; 76M28 ; 65C05