En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 82B26 6 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Lecture 1. Collective dynamics and self-organization in biological systems : challenges and some examples.

Lecture 2. The Vicsek model as a paradigm for self-organization : from particles to fluid via kinetic descriptions

Lecture 3. Phase transitions in the Vicsek model : mathematical analyses in the kinetic framework.

35L60 ; 82C22 ; 82B26 ; 82C26 ; 92D50

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Lecture 1. Collective dynamics and self-organization in biological systems : challenges and some examples.

Lecture 2. The Vicsek model as a paradigm for self-organization : from particles to fluid via kinetic descriptions

Lecture 3. Phase transitions in the Vicsek model : mathematical analyses in the kinetic framework.

35L60 ; 82C22 ; 82B26 ; 82C26 ; 92D50

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Lecture 1. Collective dynamics and self-organization in biological systems : challenges and some examples.

Lecture 2. The Vicsek model as a paradigm for self-organization : from particles to fluid via kinetic descriptions

Lecture 3. Phase transitions in the Vicsek model : mathematical analyses in the kinetic framework.

35L60 ; 82C22 ; 82B26 ; 82C26 ; 92D50

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Bootstrap percolation on Erdos-Renyi graphs - Angel, Omer (Author of the conference) | CIRM H

Post-edited

We consider bootstrap percolation on the Erdos-Renyi graph: given an initial infected set, a vertex becomes infected if it has at least $r$ infected neighbours. The graph is susceptible if there exists an initial set of size $r$ that infects the whole graph. We identify the critical threshold for susceptibility. We also analyse Bollobas's related graph-bootstrap percolation model.
Joint with Brett Kolesnik.

05C80 ; 60K35 ; 60J85 ; 82B26 ; 82B43

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Stable phase transitions: from nonlocal to local - Serra, Joaquim (Author of the conference) | CIRM H

Multi angle

The talk will review the motivations, state of the art, recent results, and open questions on four very related PDE models related to phase transitions: Allen-Cahn, Peierls-Nabarro, Minimal surfaces, and Nonlocal Minimal surfaces. We will focus on the study of stable solutions (critical points of the corresponding energy functionals with nonnegative second variation). We will discuss new nonlocal results on stable phase transitions, explaining why the stability assumption gives stronger information in presence of nonlocal interactions. We will also comment on the open problems and obstructions in trying to make the nonlocal estimates robust as the long-range (or nonlocal) interactions become short-range (or local).[-]
The talk will review the motivations, state of the art, recent results, and open questions on four very related PDE models related to phase transitions: Allen-Cahn, Peierls-Nabarro, Minimal surfaces, and Nonlocal Minimal surfaces. We will focus on the study of stable solutions (critical points of the corresponding energy functionals with nonnegative second variation). We will discuss new nonlocal results on stable phase transitions, explaining ...[+]

82B26 ; 49Q05 ; 53A10 ; 35B35 ; 35R11

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Too many frogs cannot fall sleep - Gaudillière, Alexandre (Author of the conference) | CIRM H

Multi angle

We prove the existence of an active phase for activated random walks on the lattice in all dimensions. This interacting particle system is made of two kinds of random walkers, or frogs: active and sleeping frogs. Active frogs perform simple random walks, wake up all sleeping frogs on their trajectory and fall asleep at constant rate $\lambda$. Sleeping frogs stay where they are up to activation, when waken up by an active frog. At a large enough density, which is increasing in $\lambda$ but always less than one, such frogs on the torus form a metastable system. We prove that $n$ active frogs in a cramped torus will typically need an exponentially long time to collectively fall asleep —exponentially long in $n$. This completes the proof of existence of a non-trivial phase transition for this model designed for the study of self-organized criticality. This is a joint work with Amine Asselah and Nicolas Forien.[-]
We prove the existence of an active phase for activated random walks on the lattice in all dimensions. This interacting particle system is made of two kinds of random walkers, or frogs: active and sleeping frogs. Active frogs perform simple random walks, wake up all sleeping frogs on their trajectory and fall asleep at constant rate $\lambda$. Sleeping frogs stay where they are up to activation, when waken up by an active frog. At a large enough ...[+]

60K35 ; 82B26

Bookmarks Report an error