En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 53D37 2 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

From categories to curve-counts in mirror symmetry - Perutz, Tim (Author of the conference) | CIRM H

Multi angle

I will report on aspects of work with Sheridan and Ganatra in which we show how homo- logical mirror symmetry for Calabi-Yau manifolds implies equality of Yukawa couplings on the A- and B-sides. On the A-side, these couplings are generating functions for genus-zero GW invariants. On the B-side, one has a degenerating family of CY manifolds, and the couplings are fiberwise integrals involving a holomorphic volume form. We show that the Fukaya category implicitly "knows" the correct normalization of this volume form, as well as the mirror map.[-]
I will report on aspects of work with Sheridan and Ganatra in which we show how homo- logical mirror symmetry for Calabi-Yau manifolds implies equality of Yukawa couplings on the A- and B-sides. On the A-side, these couplings are generating functions for genus-zero GW invariants. On the B-side, one has a degenerating family of CY manifolds, and the couplings are fiberwise integrals involving a holomorphic volume form. We show that the Fukaya ...[+]

53D37 ; 14J33

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This partly expository talk focuses on the notion of ”symplectic Landau-Ginzburg models”, i.e. symplectic manifolds equipped with maps to the complex plane, ”stops”, or both, as they naturally arise in the context of mirror symmetry. We describe several viewpoints on these spaces and their Fukaya categories, their monodromy, and the functors relating them to other flavors of Fukaya categories. (This touches on work of Abouzaid, Seidel, Ganatra, Hanlon, Sylvan, Jeffs, and others).[-]
This partly expository talk focuses on the notion of ”symplectic Landau-Ginzburg models”, i.e. symplectic manifolds equipped with maps to the complex plane, ”stops”, or both, as they naturally arise in the context of mirror symmetry. We describe several viewpoints on these spaces and their Fukaya categories, their monodromy, and the functors relating them to other flavors of Fukaya categories. (This touches on work of Abouzaid, Seidel, Ganatra, ...[+]

53D37 ; 14J33 ; 53D40

Bookmarks Report an error