En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 33F10 3 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
The mini-course is structured into three parts. In the first part, we provide a general overview of the tools available in the summation package Sigma, with a particular focus on parameterized telescoping (which includes Zeilberger's creative telescoping as a special case) and recurrence solving for the class of indefinite nested sums defined over nested products. The second part delves into the core concepts of the underlying difference ring theory, offering detailed insights into the algorithmic framework. Special attention is given to the representation of indefinite nested sums and products within the difference ring setting. As a bonus, we obtain a toolbox that facilitates the construction of summation objects whose sequences are algebraically independent of one another. In the third part, we demonstrate how this summation toolbox can be applied to tackle complex problems arising in enumerative combinatorics, number theory, and elementary particle physics.[-]
The mini-course is structured into three parts. In the first part, we provide a general overview of the tools available in the summation package Sigma, with a particular focus on parameterized telescoping (which includes Zeilberger's creative telescoping as a special case) and recurrence solving for the class of indefinite nested sums defined over nested products. The second part delves into the core concepts of the underlying difference ring ...[+]

68W30 ; 33F10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
The mini-course is structured into three parts. In the first part, we provide a general overview of the tools available in the summation package Sigma, with a particular focus on parameterized telescoping (which includes Zeilberger's creative telescoping as a special case) and recurrence solving for the class of indefinite nested sums defined over nested products. The second part delves into the core concepts of the underlying difference ring theory, offering detailed insights into the algorithmic framework. Special attention is given to the representation of indefinite nested sums and products within the difference ring setting. As a bonus, we obtain a toolbox that facilitates the construction of summation objects whose sequences are algebraically independent of one another. In the third part, we demonstrate how this summation toolbox can be applied to tackle complex problems arising in enumerative combinatorics, number theory, and elementary particle physics.[-]
The mini-course is structured into three parts. In the first part, we provide a general overview of the tools available in the summation package Sigma, with a particular focus on parameterized telescoping (which includes Zeilberger's creative telescoping as a special case) and recurrence solving for the class of indefinite nested sums defined over nested products. The second part delves into the core concepts of the underlying difference ring ...[+]

68W30 ; 33F10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
The mini-course is structured into three parts. In the first part, we provide a general overview of the tools available in the summation package Sigma, with a particular focus on parameterized telescoping (which includes Zeilberger's creative telescoping as a special case) and recurrence solving for the class of indefinite nested sums defined over nested products. The second part delves into the core concepts of the underlying difference ring theory, offering detailed insights into the algorithmic framework. Special attention is given to the representation of indefinite nested sums and products within the difference ring setting. As a bonus, we obtain a toolbox that facilitates the construction of summation objects whose sequences are algebraically independent of one another. In the third part, we demonstrate how this summation toolbox can be applied to tackle complex problems arising in enumerative combinatorics, number theory, and elementary particle physics.[-]
The mini-course is structured into three parts. In the first part, we provide a general overview of the tools available in the summation package Sigma, with a particular focus on parameterized telescoping (which includes Zeilberger's creative telescoping as a special case) and recurrence solving for the class of indefinite nested sums defined over nested products. The second part delves into the core concepts of the underlying difference ring ...[+]

68W30 ; 33F10

Bookmarks Report an error