En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Agrachev, Andrei A. 1 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A sub-Riemannian distance is obtained when minimizing lengths of paths which are tangent to a distribution of planes. Such distances differ substantially from Riemannian distances, even in the simplest example, the 3-dimensional Heisenberg group. This raises many questions in metric geometry: embeddability in Banach spaces, bi-Lipschitz or bi-Hölder comparison of various examples. Emphasis will be put on Gromov's results on the Hölder homeomorphism problem, and on a quasisymmetric version of it motivated by Riemannian geometry.[-]
A sub-Riemannian distance is obtained when minimizing lengths of paths which are tangent to a distribution of planes. Such distances differ substantially from Riemannian distances, even in the simplest example, the 3-dimensional Heisenberg group. This raises many questions in metric geometry: embeddability in Banach spaces, bi-Lipschitz or bi-Hölder comparison of various examples. Emphasis will be put on Gromov's results on the Hölder ...[+]

53C20 ; 53C15

Bookmarks Report an error