Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In a recent paper, Istvan Gaal and Laszlo Remete studied the integer solutions to binary quartic Thue equations of the form $x^4-dy^4 = \pm 1$, and used their results to determine pure quartic number fields which contain a power integral basis. In our talk, we propose a new way to approach this diophantine problem, and we also show how an effective version of the abc conjecture would allow for even further improvements. This is joint work with M.A. Bennett. We also discuss a relation between this quartic diophantine equation to recent joint work with P.-Z. Yuan.
[-]
In a recent paper, Istvan Gaal and Laszlo Remete studied the integer solutions to binary quartic Thue equations of the form $x^4-dy^4 = \pm 1$, and used their results to determine pure quartic number fields which contain a power integral basis. In our talk, we propose a new way to approach this diophantine problem, and we also show how an effective version of the abc conjecture would allow for even further improvements. This is joint work with ...
[+]
11D25 ; 11D57 ; 11R16
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A number field is monogenic if its ring of integers is generated by a single element. It is conjectured that for any degree d > 2, the proportion of degree d number fields which are monogenic is 0. There are local obstructions that force this proportion to be < 100%, but beyond this very little is known. I'll discuss work with Alpoge and Bhargava showing that a positive proportion of cubic fields (d = 3) have no local obstructions and yet are still not monogenic. This uses new results on ranks of Selmer groups of elliptic curves in twist families.
[-]
A number field is monogenic if its ring of integers is generated by a single element. It is conjectured that for any degree d > 2, the proportion of degree d number fields which are monogenic is 0. There are local obstructions that force this proportion to be < 100%, but beyond this very little is known. I'll discuss work with Alpoge and Bhargava showing that a positive proportion of cubic fields (d = 3) have no local obstructions and yet are ...
[+]
11R16 ; 11G05