En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 11U09 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will report on work with Stout from arXiv:2304.12267. Since the work by Denef, p-adic cell decomposition provides a well-established method to study p-adic and motivic integrals. In this paper, we present a variant of this method that keeps track of existential quantifiers. This enables us to deduce descent properties for p-adic integrals. We will explain all this in the talk.

03C98 ; 11U09 ; 14B05 ; 11S40 ; 14E18 ; 11F23

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Lang-Weil type bounds in finite difference fields - Hils, Martin (Auteur de la conférence) | CIRM H

Multi angle

(joint work with Ehud Hrushovski, Jinhe Ye and Tingxiang Zou)
We prove Lang-Weil type bounds for the number of rational points of difference varieties over finite difference fields, in terms of the transformal dimension of the variety and assuming the existence of a smooth rational point. It follows that in (certain) non-principle ultraproducts of finite difference fields the course dimension of a quantifier free type equals its transformal tran-scendence degree.
The proof uses a strong form of the Lang-Weil estimates and, as key ingredi-ent to obtain equidimensional Frobenius specializations, the recent work of Dor and Hrushovski on the non-standard Frobenius acting on an algebraically closed non-trivially valued field, in particular the pure stable embeddedness of the residue difference field in this context.[-]
(joint work with Ehud Hrushovski, Jinhe Ye and Tingxiang Zou)
We prove Lang-Weil type bounds for the number of rational points of difference varieties over finite difference fields, in terms of the transformal dimension of the variety and assuming the existence of a smooth rational point. It follows that in (certain) non-principle ultraproducts of finite difference fields the course dimension of a quantifier free type equals its transformal ...[+]

11U09 ; 03C13 ; 11G25 ; 03C20 ; 03C60 ; 12L12

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The existential closedness problem for a function $f$ is to show that a system of complex polynomials in $2 n$ variables always has solutions in the graph of $f$, except when there is some geometric obstruction. Special cases have be proven for exp, Weierstrass $\wp$ functions, the Klein $j$ function, and other important functions in arithmetic geometry using a variety of techniques. Recently, some special cases have also been studied for well-known solutions of difference equations using different methods. There is potential to expand on these results by adapting the strategies used to prove existential closedness results for functions in arithmetic geometry to work for analytic solutions of difference equations.[-]
The existential closedness problem for a function $f$ is to show that a system of complex polynomials in $2 n$ variables always has solutions in the graph of $f$, except when there is some geometric obstruction. Special cases have be proven for exp, Weierstrass $\wp$ functions, the Klein $j$ function, and other important functions in arithmetic geometry using a variety of techniques. Recently, some special cases have also been studied for ...[+]

30C15 ; 32A60 ; 33B15 ; 03C05 ; 11U09

Sélection Signaler une erreur