En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14F10 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will show that there exists a correspondence between smooth $l$-adic sheaves and overconvergent $F$-isocrystals over a curve preserving the Frobenius eigenvalues. Moreover, we show the existence of $l$-adic companions associated to overconvergent $F$-isocrystals for smooth varieties.
Some part of the work is done jointly with Esnault.

12H25 ; 14F30 ; 14F10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Skeletons and moduli of Stokes torsors - Teyssier, Jean-Baptiste (Auteur de la conférence) | CIRM H

Multi angle

In the local classification of differential equations of one complex variable, torsors under a certain sheaf of algebraic groups (the Stokes sheaf) play a central role. On the other hand, Deligne defined in positive characteristic a notion of skeletons for l-adic local systems on a smooth variety, constructed an algebraic variety parametrizing skeletons and raised the question wether every skeleton comes from an actual l-adic local system. We will explain how to use a variant of Deligne's skeleton conjecture in characteristic 0 to prove the existence of an algebraic variety parametrizing Stokes torsors. We will show how the geometry of this moduli can be used to prove new finiteness results on differential equations.[-]
In the local classification of differential equations of one complex variable, torsors under a certain sheaf of algebraic groups (the Stokes sheaf) play a central role. On the other hand, Deligne defined in positive characteristic a notion of skeletons for l-adic local systems on a smooth variety, constructed an algebraic variety parametrizing skeletons and raised the question wether every skeleton comes from an actual l-adic local system. We ...[+]

32C38 ; 14F10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Arithmetic of rank one local systems - Esnault, Hélène (Auteur de la conférence) | CIRM H

Multi angle

Joint with Moritz Kerz. We study arithmetic subvarieties of the character variety of normal complex varieties defined over a field of finite type.

14D20 ; 14F05 ; 14F10 ; 14F30 ; 14K15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will discuss applications of geometric representation theory to topological and quantum invariants of character stacks. In particular, I will explain how generalized Springer correspondence for class $D$-modules and Koszul duality for Hecke categories encode surprising structure underlying the homology of character stacks of surfaces (joint work with David Ben-Zvi and David Nadler). I will then report on some work in progress with David Jordan and Pavel Safronov concerning a q-analogue of these ideas. The applications include an approach towards Witten's conjecture on the fi dimensionality of skein modules, and methods for computing these dimensions in certain cases.[-]
I will discuss applications of geometric representation theory to topological and quantum invariants of character stacks. In particular, I will explain how generalized Springer correspondence for class $D$-modules and Koszul duality for Hecke categories encode surprising structure underlying the homology of character stacks of surfaces (joint work with David Ben-Zvi and David Nadler). I will then report on some work in progress with David Jordan ...[+]

14F10 ; 14D23

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Hodge filtration and birational geometry - Popa, Mihnea (Auteur de la conférence) | CIRM H

Multi angle

I will give a general introduction to the study of the Hodge filtration on local cohomology sheaves associated to closed subschemes of smooth complex varieties, using techniques from both D-module theory and birational geometry. In the case of hypersurfaces, this is essentially the theory of Hodge ideals, which I will recall. This study has applications to various topics, like local vanishing, local cohomological dimension, the Du Bois complex, minimal exponents of singularities, etc. I will discuss a few, and more will appear in M. Mustaja's lecture.[-]
I will give a general introduction to the study of the Hodge filtration on local cohomology sheaves associated to closed subschemes of smooth complex varieties, using techniques from both D-module theory and birational geometry. In the case of hypersurfaces, this is essentially the theory of Hodge ideals, which I will recall. This study has applications to various topics, like local vanishing, local cohomological dimension, the Du Bois complex, ...[+]

14B05 ; 14F10 ; 32S35 ; 14F17

Sélection Signaler une erreur