Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk I will discuss about the unirationality of the Hurwitz spaces $H_{g,d}$ parametrizing d-sheeted branched simple covers of the projective line by smooth curves of genus $g$. I will summarize what is already known and formulate some questions and speculations on the general behaviour. I will then present a proof of the unirationality of $H_{12,8}$ and $H_{13,7}$, obtained via liaison and matrix factorizations. This is part of two joint works with Frank-Olaf Schreyer.
[-]
In this talk I will discuss about the unirationality of the Hurwitz spaces $H_{g,d}$ parametrizing d-sheeted branched simple covers of the projective line by smooth curves of genus $g$. I will summarize what is already known and formulate some questions and speculations on the general behaviour. I will then present a proof of the unirationality of $H_{12,8}$ and $H_{13,7}$, obtained via liaison and matrix factorizations. This is part of two ...
[+]
14H10 ; 14M20 ; 14Q05 ; 13D02
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Ceresa class is the image under a cycle class map of a canonical algebraic cycle associated to a curve in its Jacobian. This class vanishes for all hyperelliptic curves, and is known to be non-vanishing for the generic curve of genus at least 3. It is necessary for the Ceresa class to have infinite order for the Galois action on the fundamental group of a curve to have big image. We will present an algorithm for certifying that a curve over a number field has infinite order Ceresa class.
N.B. This is preliminary joint work with Jordan Ellenberg, Adam Logan and Akshay Venkatesh.
[-]
The Ceresa class is the image under a cycle class map of a canonical algebraic cycle associated to a curve in its Jacobian. This class vanishes for all hyperelliptic curves, and is known to be non-vanishing for the generic curve of genus at least 3. It is necessary for the Ceresa class to have infinite order for the Galois action on the fundamental group of a curve to have big image. We will present an algorithm for certifying that a curve over ...
[+]
14C25 ; 14H25 ; 14Q05 ; 11G30 ; 11G40