Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk we will don't speak about Joseph-Louis Lagrange (1736-1813) but about Lagrange's reception at the nineteenth Century. "Who read Lagrange at this Times?", "Why and How?", "What does it mean being a mathematician or doing mathematics at this Century" are some of the questions of our conference. We will give some elements of answers and the case Lagrange will be a pretext in order to explain what are doing historians of mathematics: searching archives and – thanks to a methodology – trying to understand, read and write the Past.
Lagrange - mathematical press - complete works - bibliographic index of mathematical sciences (1894-1912) - Liouville - Boussinesq - Terquem
[-]
In this talk we will don't speak about Joseph-Louis Lagrange (1736-1813) but about Lagrange's reception at the nineteenth Century. "Who read Lagrange at this Times?", "Why and How?", "What does it mean being a mathematician or doing mathematics at this Century" are some of the questions of our conference. We will give some elements of answers and the case Lagrange will be a pretext in order to explain what are doing historians of mathematics: ...
[+]
01A50 ; 01A55 ; 01A70 ; 01A74 ; 01A80
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Recently several papers appears on ArXiv, on various topics apparently unrelated such as: spin system observable (T. Helmuth, A. Shapira), Fibonacci polynomials (A. Garsia, G. Ganzberger), fully commutative elements in Coxeter groups (E. Bagno, R. Biagioli, F. Jouhet, Y. Roichman), reciprocity theorem for bounded Dyck paths (J. Cigler, C. Krattenthaler), uniform random spanning tree in graphs (L. Fredes, J.-F. Marckert). In each of these papers the theory of heaps of pieces plays a central role. We propose a walk relating these topics, starting from the well-known loop erased random walk model (LERW), going around the classical bijection between lattice paths and heaps of cycles, and a second less known bijection due to T. Helmuth between lattice paths and heaps of oriented loops, in relation with the Ising model in physics, totally non-backtracking paths and zeta function in graphs. Dyck paths, these two bijections involve heaps of dimers and heaps of segments. A duality between these two kinds of heaps appears in some of the above papers, in relation with orthogonal polynomials and fully commutative elements. If time allows we will finish this excursion with the correspondence between heaps of segments, staircase polygons and q-Bessel functions.
[-]
Recently several papers appears on ArXiv, on various topics apparently unrelated such as: spin system observable (T. Helmuth, A. Shapira), Fibonacci polynomials (A. Garsia, G. Ganzberger), fully commutative elements in Coxeter groups (E. Bagno, R. Biagioli, F. Jouhet, Y. Roichman), reciprocity theorem for bounded Dyck paths (J. Cigler, C. Krattenthaler), uniform random spanning tree in graphs (L. Fredes, J.-F. Marckert). In each of these papers ...
[+]
01A55 ; 05A15 ; 11B39 ; 20F55 ; 82B20
Déposez votre fichier ici pour le déplacer vers cet enregistrement.