En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 05B45 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Domino snake problems on groups - Aubrun, Nathalie (Auteur de la conférence) | CIRM H

Multi angle

Wang's tiles were introduced in the 1960s and have been an inexhaustible source of undecidable problems ever since. They are unit square tiles with colored edges and fixed orientation, which can be placed together provided they share the same color on their common edge. Many decision problems involving Wang tiles follow the same global structure: given a finite set of Wang tiles, is there an algorithm to determine if they tile a particular shape or subset of the infinite grid? If we look for a tiling of the whole grid, this is the domino problem which is known to be undecidable for Z2 and many other groups. In this talk we focus on infinite snake tilings. Originally the infinite snake problem asks is there exists a tiling of a self-avoiding bi-infinite path on the grid Z2. In this talk I present how to expand the scope of domino snake problems to finitely generated groups to understand how the underlying structure affects computability. This is joint work with Nicolás Bitar.[-]
Wang's tiles were introduced in the 1960s and have been an inexhaustible source of undecidable problems ever since. They are unit square tiles with colored edges and fixed orientation, which can be placed together provided they share the same color on their common edge. Many decision problems involving Wang tiles follow the same global structure: given a finite set of Wang tiles, is there an algorithm to determine if they tile a particular shape ...[+]

05B45 ; 03D80 ; 37B10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The two-periodic Aztec diamond is a dimer or random tiling model with three phases, solid, liquid and gas. The dimers form a determinantal point process with a somewhat complicated but explicit correlation kernel. I will discuss in some detail how the Airy point process can be found at the liquid-gas boundary by looking at suitable averages of height function differences. The argument is a rather complicated analysis using the cumulant approach and subtle cancellations. Joint work with Vincent Beffara and Sunil Chhita.[-]
The two-periodic Aztec diamond is a dimer or random tiling model with three phases, solid, liquid and gas. The dimers form a determinantal point process with a somewhat complicated but explicit correlation kernel. I will discuss in some detail how the Airy point process can be found at the liquid-gas boundary by looking at suitable averages of height function differences. The argument is a rather complicated analysis using the cumulant approach ...[+]

60K35 ; 60G55 ; 60C05 ; 82B20 ; 05B45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The undecidability of the domino problem - Jeandel, Emmanuel (Auteur de la conférence) | CIRM H

Multi angle

One of the most fundamental problem in tiling theory is to decide, given a surface, a set of tiles and a tiling rule, whether there exist a way to tile the surface using the set of tiles and following the rules. As proven by Berger in the 60's, this problem is undecidable in general.
When formulated in terms of tilings of the discrete plane by unit tiles with colored constraints, this is called the Domino Problem and was introduced by Wang in an effort to solve satisfaction problems for ??? formulas by translating the problem into a geometric problem.
In this course, we will give a brief description of the problem and to the meaning of the word “undecidable”, and then give two different proofs of the result.[-]
One of the most fundamental problem in tiling theory is to decide, given a surface, a set of tiles and a tiling rule, whether there exist a way to tile the surface using the set of tiles and following the rules. As proven by Berger in the 60's, this problem is undecidable in general.
When formulated in terms of tilings of the discrete plane by unit tiles with colored constraints, this is called the Domino Problem and was introduced by Wang in an ...[+]

03D35 ; 05B45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will discuss polynomials $P_{N}$ of degree $N$ that satisfy non-Hermitian orthogonality conditions with respect to the weight $\frac{\left ( z+1 \right )^{N}\left ( z+a \right )^{N}}{z^{2N}}$ on a contour in the complex plane going around 0. These polynomials reduce to Jacobi polynomials in case a = 1 and then their zeros cluster along an open arc on the unit circle as the degree tends to infinity.
For general a, the polynomials are analyzed by a Riemann-Hilbert problem. It follows that the zeros exhibit an interesting transition for the value of a = 1/9, when the open arc closes to form a closed curve with a density that vanishes quadratically. The transition is described by a Painlevé II transcendent.
The polynomials arise in a lozenge tiling problem of a hexagon with a periodic weighting. The transition in the behavior of zeros corresponds to a tacnode in the tiling problem.
This is joint work in progress with Christophe Charlier, Maurice Duits and Jonatan Lenells and we use ideas that were developed in [2] for matrix valued orthogonal polynomials in connection with a domino tiling problem for the Aztec diamond.[-]
I will discuss polynomials $P_{N}$ of degree $N$ that satisfy non-Hermitian orthogonality conditions with respect to the weight $\frac{\left ( z+1 \right )^{N}\left ( z+a \right )^{N}}{z^{2N}}$ on a contour in the complex plane going around 0. These polynomials reduce to Jacobi polynomials in case a = 1 and then their zeros cluster along an open arc on the unit circle as the degree tends to infinity.
For general a, the polynomials are analyzed ...[+]

05B45 ; 52C20 ; 33C45 ; 60B20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Comptage et design multiple d'ARN - Ponty, Yann (Auteur de la conférence) | CIRM H

Multi angle

Les Acides RiboNucléiques (ARN) sont des biopolymères linéaires omniprésents dans notre organisme, pouvant être codés comme des séquences sur un alphabet A,C,G,U. Ces molécules se replient sur elles-mêmes, établissant des liaisons hydrogènes d'où découlent l'appariement de certaines des positions, selon des règles de compatibilité des lettres n'autorisant que les paires dans l'ensemble A,U,C,G,G,U. De ce mécanisme d'appariements résulte l'adoption d'une ou plusieurs conformations, appelées structures secondaires, au passage bijectif avec les mots de Motzkin sans-pic. De nombreuses applications, en nanotechnologie, médecine, ou biostatistique, nécessitent de compter, ou encore engendrer aléatoirement, des séquences d'ARN simultanément compatibles avec un ensemble donné de structures secondaires. Un algorithme exponentiel, basé sur une décomposition (ear decomposition) du graphe de dépendance induit par l'union des paires, a ainsi été proposé par Höner zu Siederdissen et al [A]. Cet algorithme utilise la méthode récursive/programmation dynamique pour précalculer les nombres d'affectations compatibles avant/après chacun des choix locaux. Une phase de génération utilise ensuite ces nombres pour garantir l'uniformité de la génération. Cependant, cet algorithme ne permettait pas la prise en compte de critères énergétiques plus complexes, nécessitant l'utilisation d'un formalisme plus expressif que les graphes de dépendance (hypergraphes). De plus, la complexité de l'algorithme, théoriquement exponentielle sur un paramètre non-borné et parfois élevée en pratique, soulevait la question de la complexité du problème de comptage.
Dans un travail récent avec Hammer, Wang et Will [B], nous établissons la #P complétude, et la complexité d'approximation, du problème de comptage des séquences compatibles. Notre preuve repose sur une bijection simple entre les séquences compatibles et les stables du graphes de dépendance. Nous proposons une approche alternative, basée sur la décomposition arborescente, pour contrôler de façon probabiliste [C] l'énergie moyenne des séquences pour les différentes structures, ou la composition en les différentes lettres. Ces résultats fournissent un cadre flexible et expressif pour le design d'ARN, et soulèvent des questions sur l'utilisation de stratégies alternatives (génération de Boltzmann, simulation parfaite) pour la génération aléatoire, ainsi sur le concept d'analyse en moyenne dans un contexte où la donnée en entrée est plus complexe que la taille de l'objet engendré.[-]
Les Acides RiboNucléiques (ARN) sont des biopolymères linéaires omniprésents dans notre organisme, pouvant être codés comme des séquences sur un alphabet A,C,G,U. Ces molécules se replient sur elles-mêmes, établissant des liaisons hydrogènes d'où découlent l'appariement de certaines des positions, selon des règles de compatibilité des lettres n'autorisant que les paires dans l'ensemble A,U,C,G,G,U. De ce mécanisme d'appariements résulte ...[+]

05A05 ; 05B45 ; 60C05 ; 68Q87 ; 68Q45 ; 68R05 ; 68W32 ; 90C27 ; 92D20

Sélection Signaler une erreur