En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35Q35 29 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Vlasov-Poisson-Fokker-Planck equations provide a simplified model for a cloud of cold atoms in a Magneto Optical Trap. The strong field, or quasi-neutral regime, where the repulsive interaction dominates, is often relevant for experiments. Motivated by this example and more generally by trapped non neutral plasmas, we study this quasi-neutral limit, and show under certain conditions the convergence of the solution of Vlasov-Poisson-Fokker-Planck equations to the solution of incompressible Euler equation.
For an infinite or periodic system, this limit has already been studied by Y. Brenier and N. Masmoudi. New difficulties arise here from the Fokker-Planck operator, and especially from the boundary conditions (Joint work with D. Chiron, T. Goudon et N. Masmoudi).[-]
Vlasov-Poisson-Fokker-Planck equations provide a simplified model for a cloud of cold atoms in a Magneto Optical Trap. The strong field, or quasi-neutral regime, where the repulsive interaction dominates, is often relevant for experiments. Motivated by this example and more generally by trapped non neutral plasmas, we study this quasi-neutral limit, and show under certain conditions the convergence of the solution of Vlasov-Poisson-Fokker-Planck ...[+]

35Q35 ; 82D10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We first summarize the derivation of viscoelastic (rate-type) fluids with stress diffusion that generates the models that are compatible with the second law of thermodynamics and where no approximation/reduction takes place. The approach is based on the concept of natural configuration that splits the total response between the current and initial configuration into the purely elastic and dissipative part. Then we restrict ourselves to the class of fluids where elastic response is purely spherical. For such class of fluids we then provide a mathematical theory that, in particular, includes the long-time and large-data existence of weak solution for suitable initial and boundary value problems. This is a joint work with Miroslav Bulicek, Vit Prusa and Endre Suli.[-]
We first summarize the derivation of viscoelastic (rate-type) fluids with stress diffusion that generates the models that are compatible with the second law of thermodynamics and where no approximation/reduction takes place. The approach is based on the concept of natural configuration that splits the total response between the current and initial configuration into the purely elastic and dissipative part. Then we restrict ourselves to the class ...[+]

76A10 ; 80A10 ; 35D30 ; 35Q35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

An asymptotic regime for the Vlasov-Poisson system - Miot, Evelyne (Auteur de la conférence) | CIRM H

Multi angle

We investigate the gyrokinetic limit for the two-dimensional Vlasov-Poisson system in a regime studied by F. Golse and L. Saint-Raymond. First we establish the convergence towards the Euler equation under several assumptions on the energy and on the norms of the initial data. Then we provide a first analysis of the asymptotics for a Vlasov-Poisson system describing the interaction of a bounded density with a moving point charge.

82D10 ; 82C40 ; 35Q35 ; 35Q83 ; 35Q31

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped modes. Associated eigenvalues $\lambda = k^2$ are embedded in the essential spectrum $\mathbb{R}^+$. They can be computed as the real part of the complex spectrum of a non-self-adjoint eigenvalue problem, defined by using the so-called Perfectly Matched Layers (which consist in a complex dilation in the infinite direction) [1].
We show here that it is possible, by modifying in particular the parameters of the Perfectly Matched Layers, to define new complex spectra which include, in addition to trapped modes, frequencies where the potential $V$ is, in some sense, invisible to one incident wave.
Our approach allows to extend to higher dimension the results obtained in [2] on a 1D model problem.[-]
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped ...[+]

35Q35 ; 35J05 ; 65N30 ; 41A60 ; 47H10 ; 76Q05 ; 35B40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Dynamics of almost parallel vortex filaments - Banica, Valeria (Auteur de la conférence) | CIRM H

Multi angle

We consider the 1-D Schrödinger system with point vortex-type interactions that was derived by R. Klein, A. Majda and K. Damodaran and by V. Zakharov to modelize the dynamics of N nearly parallel vortex filaments in a 3-D incompressible fluid. We first prove a global in time result and display several classes of solutions. Then we consider the problem of collisions. In particular we establish rigorously the existence of a pair of almost parallel vortex filaments, with opposite circulation, colliding at some point in finite time. These results are joint works with E. Faou and E. Miot.[-]
We consider the 1-D Schrödinger system with point vortex-type interactions that was derived by R. Klein, A. Majda and K. Damodaran and by V. Zakharov to modelize the dynamics of N nearly parallel vortex filaments in a 3-D incompressible fluid. We first prove a global in time result and display several classes of solutions. Then we consider the problem of collisions. In particular we establish rigorously the existence of a pair of almost parallel ...[+]

35Q35 ; 76B47

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

From Vlasov-Poisson to Euler in the gyrokinetic limit - Miot, Evelyne (Auteur de la conférence) | CIRM H

Multi angle

We investigate the gyrokinetic limit for the two-dimensional Vlasov-Poisson system in a regime studied by F. Golse and L. Saint-Raymond [1, 3]. First we establish the convergence towards the Euler equation under several assumptions on the energy and on the norms of the initial data. Then we analyze the asymptotics for a Vlasov-Poisson system describing the interaction of a bounded density of particles with a moving point charge, characterized by a Dirac mass in the phase-space.[-]
We investigate the gyrokinetic limit for the two-dimensional Vlasov-Poisson system in a regime studied by F. Golse and L. Saint-Raymond [1, 3]. First we establish the convergence towards the Euler equation under several assumptions on the energy and on the norms of the initial data. Then we analyze the asymptotics for a Vlasov-Poisson system describing the interaction of a bounded density of particles with a moving point charge, characterized by ...[+]

76X05 ; 82C21 ; 35Q35 ; 35Q83 ; 35Q60 ; 82D10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Following the seminal work by Benamou and Brenier on the time continuous formulation of the optimal transport problem, we show how optimal transport techniques can be used in various areas, ranging from "the reconstruction problem" cosmology to a problem of volatility calibration in finance.

65K10 ; 85A30 ; 85A40 ; 35Q35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The inhomogeneous incompressible Navier-Stokes equations that govern the evolution of viscous incompressible flows with non-constant density have received a lot of attention lately. In this talk, we shall mainly focus on the singular situation where the density is discontinuous, which is in particular relevant for describing the evolution of a mixture of two incompressible and non reacting fluids with constant density, or of a drop of liquid in vacuum. We shall highlight the places where tools in harmonic analysis play a key role, and present a few open problems.[-]
The inhomogeneous incompressible Navier-Stokes equations that govern the evolution of viscous incompressible flows with non-constant density have received a lot of attention lately. In this talk, we shall mainly focus on the singular situation where the density is discontinuous, which is in particular relevant for describing the evolution of a mixture of two incompressible and non reacting fluids with constant density, or of a drop of liquid in ...[+]

35Q30 ; 76D05 ; 35Q35 ; 76D03

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
​I will discuss recent developments concerning the non-uniqueness of distributional solutions to the Navier-Stokes equation.

35Q30 ; 76D05 ; 35Q35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Euler-Korteweg system corresponds to compressible, inviscid fluids with capillary forces. It can be used to model diffuse interfaces. Mathematically it reads as the Euler equations with a third order dispersive perturbation corresponding to the capillary tensor.

In dimension one there exists traveling waves with equal or different limit at infinity, respectively solitons and kinks. Their stability is ruled by a simple criterion a la Grillakis-Shatah-Strauss. This talk is devoted to the construction of multiple traveling waves, namely global solutions that converge as $t\rightarrow \infty $ to a profile made of several (stable) traveling waves. The waves constructed have both solitons and kinks. Multiple traveling waves play a peculiar role in the dynamics of dispersive equations, as they correspond to solutions that follow in some sense a purely nonlinear evolution.[-]
The Euler-Korteweg system corresponds to compressible, inviscid fluids with capillary forces. It can be used to model diffuse interfaces. Mathematically it reads as the Euler equations with a third order dispersive perturbation corresponding to the capillary tensor.

In dimension one there exists traveling waves with equal or different limit at infinity, respectively solitons and kinks. Their stability is ruled by a simple criterion a la ...[+]

35Q35 ; 35C07 ; 35Q53 ; 35Q31 ; 35B35

Sélection Signaler une erreur