En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 76D05 13 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic structure. The purpose of the present lecture is to present an overview of some of the mathematical and numerical difficulties that may be encountered when dealing with fluid–structure interaction problems such as the geometrical nonlinearities or the added mass effect and how one can deal with these difficulties.[-]
Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic ...[+]

74S05 ; 76M10 ; 74F10 ; 76D05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic structure. The purpose of the present lecture is to present an overview of some of the mathematical and numerical difficulties that may be encountered when dealing with fluid–structure interaction problems such as the geometrical nonlinearities or the added mass effect and how one can deal with these difficulties.[-]
Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic ...[+]

74S05 ; 76M10 ; 74F10 ; 76D05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic structure. The purpose of the present lecture is to present an overview of some of the mathematical and numerical difficulties that may be encountered when dealing with fluid–structure interaction problems such as the geometrical nonlinearities or the added mass effect and how one can deal with these difficulties.[-]
Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic ...[+]

74S05 ; 76M10 ; 74F10 ; 76D05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Consider the motion of a viscous incompressible fluid in a 3D exterior domain $D$ when a rigid body $\mathbb R^3\setminus D$ moves with prescribed time-dependent translational and angular velocities. For the linearized non-autonomous system, $L^q$-$L^r$ smoothing action near $t=s$ as well as generation of the evolution operator $\{T(t,s)\}_{t\geq s\geq 0}$ was shown by Hansel and Rhandi [1] under reasonable conditions. In this presentation we develop the $L^q$-$L^r$ decay estimates of the evolution operator $T(t,s)$ as $(t-s)\to\infty$ and then apply them to the Navier-Stokes initial value problem.[-]
Consider the motion of a viscous incompressible fluid in a 3D exterior domain $D$ when a rigid body $\mathbb R^3\setminus D$ moves with prescribed time-dependent translational and angular velocities. For the linearized non-autonomous system, $L^q$-$L^r$ smoothing action near $t=s$ as well as generation of the evolution operator $\{T(t,s)\}_{t\geq s\geq 0}$ was shown by Hansel and Rhandi [1] under reasonable conditions. In this presentation we ...[+]

35Q30 ; 76D05 ; 76D07

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The inhomogeneous incompressible Navier-Stokes equations that govern the evolution of viscous incompressible flows with non-constant density have received a lot of attention lately. In this talk, we shall mainly focus on the singular situation where the density is discontinuous, which is in particular relevant for describing the evolution of a mixture of two incompressible and non reacting fluids with constant density, or of a drop of liquid in vacuum. We shall highlight the places where tools in harmonic analysis play a key role, and present a few open problems.[-]
The inhomogeneous incompressible Navier-Stokes equations that govern the evolution of viscous incompressible flows with non-constant density have received a lot of attention lately. In this talk, we shall mainly focus on the singular situation where the density is discontinuous, which is in particular relevant for describing the evolution of a mixture of two incompressible and non reacting fluids with constant density, or of a drop of liquid in ...[+]

35Q30 ; 76D05 ; 35Q35 ; 76D03

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
​I will discuss recent developments concerning the non-uniqueness of distributional solutions to the Navier-Stokes equation.

35Q30 ; 76D05 ; 35Q35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A common way to prove global well-posedness of free boundary problems for incompressible viscous fluids is to transform the equations governing the fluid motion to a fixed domain with respect to the time variable. An elegant and physically reasonable way to do this is to introduce Lagrangian coordinates. These coordinates are given by the transformation rule

$x(t)=\xi +\int_{0}^{t}u(\tau ,\xi ) d\tau $

where $u(\tau ,\xi )$ is the velocity vector of the fluid particle at time $\tau$ that initially started at position $\xi$. The variable $x(t)$ is then the so-called Eulerian variable and belongs to the coordinate frame where the domain that is occupied by the fluid moves with time.The variable $\xi$ is the Lagrangian variable that belongs to time fixed variables. In these coordinates the fluid only occupies the domain $\Omega_{0}$ that is occupied at initial time t = 0.
To prove a global existence result for such a problem, it is important to guarantee the invertibility of this coordinate transform globally in time. By virtue of the inverse function theorem, this is the case if

$\nabla_{\xi }x(t)=Id+\int_{0}^{t}\nabla_{\xi }u(\tau ,\xi )d\tau $

is invertible. By using a Neumann series argument, this is invertible, if the integral termon the right-hand side is small in $L^{\infty }(\Omega _{0})$. Thus, it is important to have a global control of this $L^{1}$-time integral with values in $L^{\infty }(\Omega _{0})$. If the domain is bounded, this can be controlled by exponential decay properties of the corresponding semigroup operators that describe the motion of the linearized fluid equation. On unbounded domains, however, these decay properties are not true anymore. While there are technical possibilities to fix these problems if the boundary is compact, these fixes cease to work if the boundary is non-compact.
As a model problem, we consider the case where $\Omega _{0}$ is the upper half-space. To obtain estimates of the $L^{1}$-time integral we use the theorem of Da Prato and Grisvard of 1975 about maximal regularity in real interpolation spaces. The need of global in timecontrol, however, makes it necessary to work out a version of this theorem that involves “homogeneous” estimates only (this was also done in the book of Markus Haase). In the talk, we show how to obtain this global Lagrangian coordinate transform from this theorem of Da Prato and Grisvard.[-]
A common way to prove global well-posedness of free boundary problems for incompressible viscous fluids is to transform the equations governing the fluid motion to a fixed domain with respect to the time variable. An elegant and physically reasonable way to do this is to introduce Lagrangian coordinates. These coordinates are given by the transformation rule

$x(t)=\xi +\int_{0}^{t}u(\tau ,\xi ) d\tau $

where $u(\tau ,\xi )$ is ...[+]

35Q35 ; 76D05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Geometric structures in 2D Navier-Stokes flows - Brandolese, Lorenzo (Auteur de la conférence) | CIRM H

Multi angle

Geometric structures naturally appear in fluid motions. One of the best known examples is Saturn's Hexagon, the huge cloud pattern at the level of Saturn's north pole, remarkable both for the regularity of its shape and its stability during the past decades. In this paper we will address the spontaneous formation of hexagonal structures in planar viscous flows, in the classical setting of Leray's solutions of the Navier–Stokes equations. Our analysis also makes evidence of the isotropic character of the energy density of the fluid for sufficiently localized 2D flows in the far field: it implies, in particular, that fluid particles of such flows are nowhere at rest at large distances.[-]
Geometric structures naturally appear in fluid motions. One of the best known examples is Saturn's Hexagon, the huge cloud pattern at the level of Saturn's north pole, remarkable both for the regularity of its shape and its stability during the past decades. In this paper we will address the spontaneous formation of hexagonal structures in planar viscous flows, in the classical setting of Leray's solutions of the Navier–Stokes equations. Our ...[+]

35Q30 ; 76D05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Mathematical analysis of geophysical models - Titi, Edriss S. (Auteur de la conférence) | CIRM H

Multi angle

In this course I will be covering three main topics. The first part will be concerning the NavierStokes and Euler equations - a quick survey. The second part will discuss the question of global regularity of certain geophysical flows. The third part about coupling the atmospheric models with the microphysics dynamics of moisture in warm clouds formation.
The basic problem faced in geophysical fluid dynamics is that a mathematical description based only on fundamental physical principles, which are called the 'Primitive Equations', is often prohibitively expensive computationally, and hard to study analytically. In these introductory lectures, aimed toward graduate students and postdocs, I will survey the mathematical theory of the 2D and 3D Navier-Stokes and Euler equations, and stress the main obstacles in proving the global regularity for the 3D case, and the computational challenge in their direct numerical simulations. In addition, I will emphasize the issues facing the turbulence community in their turbulence closure models. However, taking advantage of certain geophysical balances and situations, such as geostrophic balance and the shallowness of the ocean and atmosphere, I will show how geophysicists derive more simplified models which are easier to study analytically. In particular, I will prove the global regularity for 3D planetary geophysical models and the Primitive equations of large scale oceanic and atmospheric dynamics with various kinds of anisotropic viscosity and diffusion. Moreover, I will also show that for certain class of initial data the solutions of the inviscid 2D and 3D Primitive Equations blowup (develop a singularity).[-]
In this course I will be covering three main topics. The first part will be concerning the NavierStokes and Euler equations - a quick survey. The second part will discuss the question of global regularity of certain geophysical flows. The third part about coupling the atmospheric models with the microphysics dynamics of moisture in warm clouds formation.
The basic problem faced in geophysical fluid dynamics is that a mathematical description ...[+]

35Q86 ; 35Q35 ; 35Q93 ; 76D05 ; 35Q30 ; 86A05 ; 86A10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the inviscid limit for the Navier-Stokes equations - Kukavica, Igor (Auteur de la conférence) | CIRM H

Virtualconference

We address a system of partial differential equations modeling a motion of an elastic body inside an incompressible fluid. The fluid is modeled by the incompressible Navier-Stokes equations while the structure is represented by the wave equation. We will review the local for large and global existence theorems and present the most most recent global existence result, which is joint with A. Tuffaha and W. Ozanski.

35Q30 ; 76D05 ; 35R35

Sélection Signaler une erreur