En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 82B41 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Random hyperbolic surfaces - Budd, Timothy (Auteur de la conférence) | CIRM H

Multi angle

Going back at least to the works of Witten and Kontsevich, it is known that (symplectic or Weil-Petersson) volumes of moduli spaces of Riemann surfaces share many features with the enumeration of maps. It is therefore natural to expect that the theory of random hyperbolic metrics sampled according to the Weil-Petersson measure on, say, punctured spheres is closely related to the theory of random planar maps. I will highlight some similarities and show that tree bijections, which are ubiquitous in the study of random planar maps, have analogues for hyperbolic surfaces. As an application, jointly with Nicolas Curien, we show that these random hyperbolic surfaces with properly rescaled metric admit a scaling limit towards the Brownian sphere when the number of punctures increases.[-]
Going back at least to the works of Witten and Kontsevich, it is known that (symplectic or Weil-Petersson) volumes of moduli spaces of Riemann surfaces share many features with the enumeration of maps. It is therefore natural to expect that the theory of random hyperbolic metrics sampled according to the Weil-Petersson measure on, say, punctured spheres is closely related to the theory of random planar maps. I will highlight some similarities ...[+]

05C80 ; 82B41 ; 30F60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Après avoir expliqué la notion de Z-invariance pour les modèles de mécanique statistique, nous introduisons une famille à un paramètre (dépendant du module elliptique) de Laplaciens massiques Z-invariants définis sur les graphes isoradiaux. Nous démontrons une formule explicite pour son inverse, la fonction de Green massique, qui a la propriété remarquable de ne dépendre que de la géométrie locale du graphe. Nous expliquerons les conséquences de ce résultat pour le modèle des forêts couvrantes, en particulier la preuve d'une transition de phase d'ordre 2 avec le modèle des arbre couvrants critiques sur les graphes isoradiaux, introduit par Kenyon. Finalement, nous considérons la courbe spectrale de ce Laplacien massique et montrons qu'il s'agit d'une courbe de Harnack de genre 1.
Il s'agit d'un travail en collaboration avec Cédric Boutillier et Kilian Raschel.[-]
Après avoir expliqué la notion de Z-invariance pour les modèles de mécanique statistique, nous introduisons une famille à un paramètre (dépendant du module elliptique) de Laplaciens massiques Z-invariants définis sur les graphes isoradiaux. Nous démontrons une formule explicite pour son inverse, la fonction de Green massique, qui a la propriété remarquable de ne dépendre que de la géométrie locale du graphe. Nous expliquerons les conséquences de ...[+]

82B20 ; 82B23 ; 82B41 ; 14H52 ; 14H70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Complete wetting in the context of the low temperature two-dimensional Ising model is characterized by creation of a mesoscopic size layer of the "-" phase above an active substrate. Adding a small positive magnetic field h makes "-"-phase unstable, and the layer becomes only microscopically thick. Critical prewetting corresponds to a continuous divergence of this layer as h tends to zero. There is a conjectured 1/3 (diffusive) scaling leading to Ferrari-Spohn diffusions. Rigorous results were established for polymer models of random and self-avoiding walks under vanishing area tilts.
A similar 1/3-scaling is conjectured to hold for top level lines of low temperature SOS-type interfaces in three dimensions. In the latter case, the effective local structure is that of ordered walks, again under area tilts. The conjectured scaling limits (rigorously established in the random walk context) are ordered diffusions driven by Airy Slatter determinants.
Based on joint walks with Senya Shlosman, Yvan Velenik and Vitali Wachtel.[-]
Complete wetting in the context of the low temperature two-dimensional Ising model is characterized by creation of a mesoscopic size layer of the "-" phase above an active substrate. Adding a small positive magnetic field h makes "-"-phase unstable, and the layer becomes only microscopically thick. Critical prewetting corresponds to a continuous divergence of this layer as h tends to zero. There is a conjectured 1/3 (diffusive) scaling leading ...[+]

60K35 ; 82B41 ; 60G50 ; 60F17

Sélection Signaler une erreur