En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 82C20 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A 2d growth model in the anisotropic KPZ class - Toninelli, Fabio (Auteur de la conférence) | CIRM H

Multi angle

Dimer models provide natural models of (2+1)-dimensional random discrete interfaces and of stochastic interface dynamics. I will discuss two examples of such dynamics, a reversible one and a driven one (growth process). In both cases we can prove the convergence of the stochastic interface evolution to a deterministic PDE after suitable (diffusive or hyperbolic respectively in the two cases) space-time rescaling.
Based on joint work with B. Laslier and M. Legras.[-]
Dimer models provide natural models of (2+1)-dimensional random discrete interfaces and of stochastic interface dynamics. I will discuss two examples of such dynamics, a reversible one and a driven one (growth process). In both cases we can prove the convergence of the stochastic interface evolution to a deterministic PDE after suitable (diffusive or hyperbolic respectively in the two cases) space-time rescaling.
Based on joint work with B. ...[+]

60K35 ; 82C20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In earlier work (arXiv:1707.04927) the authors obtained formulas for the probability in the asymmetric simple exclusion process that at time t a particle is at site x and is the beginning of a block of L consecutive particles. Here we consider asymptotics. Specifically, for the KPZ regime with step initial condition, we determine the conditional probability (asymptotically as $t\rightarrow\infty$) that a particle is the beginning of an L-block, given that it is at site x at time t. Using duality between occupied and unoccupied sites we obtain the analogous result for a gap of G unoccupied sites between the particle at x and the next one.[-]
In earlier work (arXiv:1707.04927) the authors obtained formulas for the probability in the asymmetric simple exclusion process that at time t a particle is at site x and is the beginning of a block of L consecutive particles. Here we consider asymptotics. Specifically, for the KPZ regime with step initial condition, we determine the conditional probability (asymptotically as $t\rightarrow\infty$) that a particle is the beginning of an L-block, ...[+]

82C22 ; 82C23 ; 82C20

Sélection Signaler une erreur