En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 93B40 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the space highway to Lagrange points! - Trélat, Emmanuel (Auteur de la conférence) | CIRM H

Post-edited

Everything is under control: mathematics optimize everyday life.
In an empirical way we are able to do many things with more or less efficiency or success. When one wants to achieve a parallel parking, consequences may sometimes be ridiculous... But when one wants to launch a rocket or plan interplanetary missions, better is to be sure of what we do.
Control theory is a branch of mathematics that allows to control, optimize and guide systems on which one can act by means of a control, like for example a car, a robot, a space shuttle, a chemical reaction or in more general a process that one aims at steering to some desired target state.
Emmanuel Trélat will overview the range of applications of that theory through several examples, sometimes funny, but also historical. He will show you that the study of simple cases of our everyday life, far from insignificant, allow to approach problems like the orbit transfer or interplanetary mission design.[-]
Everything is under control: mathematics optimize everyday life.
In an empirical way we are able to do many things with more or less efficiency or success. When one wants to achieve a parallel parking, consequences may sometimes be ridiculous... But when one wants to launch a rocket or plan interplanetary missions, better is to be sure of what we do.
Control theory is a branch of mathematics that allows to control, optimize and guide systems on ...[+]

49J15 ; 93B40 ; 93B27 ; 93B50 ; 65H20 ; 90C31 ; 37N05 ; 37N35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We explore a direct method allowing to solve numerically inverse type problems for hyperbolic type equations. We first consider the reconstruction of the full solution of the equation posed in $\Omega \times (0, T )$ - $\Omega$ a bounded subset of $\mathbb{R}^N$ - from a partial distributed observation. We employ a least-squares technic and minimize the $L^2$-norm of the distance from the observation to any solution. Taking the hyperbolic equation as the main constraint of the problem, the optimality conditions are reduced to a mixed formulation involving both the state to reconstruct and a Lagrange multiplier. Under usual geometric optic conditions, we show the well-posedness of this mixed formulation (in particular the inf-sup condition) and then introduce a numerical approximation based on space-time finite elements discretization. We show the strong convergence of the approximation and then discussed several examples for $N = 1$ and $N = 2$. The reconstruction of both the state and the source term is also discussed, as well as the boundary case. The parabolic case - more delicate as it requires the use of appropriate weights - will be also addressed. Joint works with Nicolae Cîndea and Diego Araujo de Souza.[-]
We explore a direct method allowing to solve numerically inverse type problems for hyperbolic type equations. We first consider the reconstruction of the full solution of the equation posed in $\Omega \times (0, T )$ - $\Omega$ a bounded subset of $\mathbb{R}^N$ - from a partial distributed observation. We employ a least-squares technic and minimize the $L^2$-norm of the distance from the observation to any solution. Taking the hyperbolic ...[+]

35L10 ; 65M12 ; 93B40

Sélection Signaler une erreur