m

F Nous contacter


0

Documents  11A63 | enregistrements trouvés : 6

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  On ellipsephic integers
Dartyge, Cécile (Auteur de la Conférence) | CIRM (Editeur )

The term " ellipsephic " was proposed by Christian Mauduit to denote the integers with missing digits in a given basis. This talk is a survey on several results on the multiplicative properties of these integers.

11A63 ; 11B25 ; 11N25 ; 11N36

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Primes with missing digits
Maynard, James (Auteur de la Conférence) | CIRM (Editeur )

We will talk about recent work showing there are infinitely many primes with no $7$ in their decimal expansion. (And similarly with $7$ replaced by any other digit.) This shows the existence of primes in a 'thin' set of numbers (sets which contain at most $X^{1-c}$ elements less than $X$) which is typically vey difficult.
The proof relies on a fun mixture of tools including Fourier analysis, Markov chains, Diophantine approximation, combinatorial geometry as well as tools from analytic number theory.
We will talk about recent work showing there are infinitely many primes with no $7$ in their decimal expansion. (And similarly with $7$ replaced by any other digit.) This shows the existence of primes in a 'thin' set of numbers (sets which contain at most $X^{1-c}$ elements less than $X$) which is typically vey difficult.
The proof relies on a fun mixture of tools including Fourier analysis, Markov chains, Diophantine approximation, com...

11N05 ; 11A63

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Given $x\in(0, 1]$, let ${\mathcal U}(x)$ be the set of bases $\beta\in(1,2]$ for which there exists a unique sequence $(d_i)$ of zeros and ones such that $x=\sum_{i=1}^{\infty}{{d_i}/{\beta^i}}$. In 2014, Lü, Tan and Wu proved that ${\mathcal U}(x)$ is a Lebesgue null set of full Hausdorff dimension. In this talk, we will show that the algebraic sum ${\mathcal U}(x)+\lambda {\mathcal U}(x)$, and the product ${\mathcal U}(x)\cdot {\mathcal U}(x)^{\lambda}$ contain an interval for all $x\in (0, 1]$ and $\lambda\ne 0$. As an application we show that the same phenomenon occurs for the set of non-matching parameters associated with the family of symmetric binary expansions studied recently by the first speaker and C. Kalle.
This is joint work with V. Komornik, D. Kong and W. Li.
Given $x\in(0, 1]$, let ${\mathcal U}(x)$ be the set of bases $\beta\in(1,2]$ for which there exists a unique sequence $(d_i)$ of zeros and ones such that $x=\sum_{i=1}^{\infty}{{d_i}/{\beta^i}}$. In 2014, Lü, Tan and Wu proved that ${\mathcal U}(x)$ is a Lebesgue null set of full Hausdorff dimension. In this talk, we will show that the algebraic sum ${\mathcal U}(x)+\lambda {\mathcal U}(x)$, and the product ${\mathcal U}(x)\cdot {\mathcal ...

28A80 ; 11A63 ; 37B10

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In the way of Arnoux-Ito, we give a general geometric criterion for a subshift to be measurably conjugated to a domain exchange and to a translation on a torus. For a subshift coming from an unit Pisot irreducible substitution, we will see that it becomes a simple topological criterion. More precisely, we define a topology on $\mathbb{Z}^d$ for which the subshift has pure discrete spectrum if and only if there exists a domain of the domain exchange on the discrete line that has non-empty interior. We will see how we can compute exactly such interior using regular languages. This gives a way to decide the Pisot conjecture for any example of unit Pisot irreducible substitution.
Joint work with Shigeki Akiyama.
In the way of Arnoux-Ito, we give a general geometric criterion for a subshift to be measurably conjugated to a domain exchange and to a translation on a torus. For a subshift coming from an unit Pisot irreducible substitution, we will see that it becomes a simple topological criterion. More precisely, we define a topology on $\mathbb{Z}^d$ for which the subshift has pure discrete spectrum if and only if there exists a domain of the domain ...

37B10 ; 28A80 ; 11A63 ; 68R15

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  On the digits of primes and squares
Rivat, Joël (Auteur de la Conférence) | CIRM (Editeur )

I will give a survey of our results on the digits of primes and squares (joint works with Michael Drmota and Christian Mauduit).

11A63 ; 11L20 ; 11N60 ; 11N05 ; 11L07

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Prime numbers with preassigned digits
Swaenepoel, Cathy (Auteur de la Conférence) | CIRM (Editeur )

Bourgain (2015) estimated the number of prime numbers with a proportion $c$ > 0 of preassigned digits in base 2 ($c$ is an absolute constant not specified). We present a generalization of this result in any base $g$ ≥ 2 and we provide explicit admissible values for the proportion $c$ depending on $g$. Our proof, which adapts, develops and refines Bourgain’s strategy, is based on the circle method and combines techniques from harmonic analysis together with results on zeros of Dirichlet $L$-functions, notably a very sharp zero-free region due to Iwaniec.
Bourgain (2015) estimated the number of prime numbers with a proportion $c$ > 0 of preassigned digits in base 2 ($c$ is an absolute constant not specified). We present a generalization of this result in any base $g$ ≥ 2 and we provide explicit admissible values for the proportion $c$ depending on $g$. Our proof, which adapts, develops and refines Bourgain’s strategy, is based on the circle method and combines techniques from harmonic analysis ...

11N05 ; 11A41 ; 11A63

Z