En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 11R09 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Dynamical irreducibility of polynomials modulo primes - Ostafe, Alina (Auteur de la Conférence) | CIRM H

Virtualconference

In this talk we look at polynomials having the property that all compositional iterates are irreducible, which we call dynamical irreducible. After surveying some previous results (mostly over finite fields), we will concentrate on the question of the dynamical irreducibility of integer polynomials being preserved in reduction modulo primes. More precisely, for a class of integer polynomials $f$, which in particular includes all quadratic polynomials, and also trinomials of some special form, we show that, under some natural conditions, he set of primes $p$ such that $f$ is dynamical irreducible modulo $p$ is of relative density zero. The proof of this result relies on a combination of analytic (the square sieve) and diophantine (finiteness of solutions to certain hyperelliptic equations) tools, which we will briefly describe.[-]
In this talk we look at polynomials having the property that all compositional iterates are irreducible, which we call dynamical irreducible. After surveying some previous results (mostly over finite fields), we will concentrate on the question of the dynamical irreducibility of integer polynomials being preserved in reduction modulo primes. More precisely, for a class of integer polynomials $f$, which in particular includes all quadratic ...[+]

11R09 ; 11R45 ; 11L40 ; 37P25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Factoring polynomials over function fields - Voloch, José Felipe (Auteur de la Conférence) | CIRM H

Multi angle

If $K$/$k$ is a function field in one variable of positive characteristic, we describe a general algorithm to factor one-variable polynomials with coefficients in $K$. The algorithm is flexible enough to find factors subject to additional restrictions, e.g., to find all roots that belong to a given finite dimensional $k$-subspace of $K$ more efficiently. This has an application to list decoding of AG codes that we also describe.

12Y05 ; 11R09 ; 11T71

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Irreducibility of random polynomials - Kozma, Gady (Auteur de la Conférence) | CIRM H

Multi angle

Take a polynomial of degree n with coefficients +/ - 1 taken randomly, independently. What is the probability that it is irreducible over the rationals? This question is still open, but a lot of progress happened around it in recent years. We will survey some of this progress, including joint work with Lior Bary-Soroker, Dimitris Koukoulopoulos and David Hokken.

11R09

Sélection Signaler une erreur