Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will sketch the construction - following ideas of Kontsevich and Nori - of a Tannakian category of exponential motives over a subfield of the complex numbers. It is a universal cohomology theory for pairs of varieties and regular functions, whose de Rham and Betti realizations are given by twisted de Rham and rapid decay cohomology respectively. The upshot is that one can attach to any such pair a motivic Galois group which conjecturally generalizes the Mumford-Tate group of a Hodge structure and, over number fields, governs all algebraic relations between exponential periods. This is a joint work with Peter Jossen (ETH).
[-]
I will sketch the construction - following ideas of Kontsevich and Nori - of a Tannakian category of exponential motives over a subfield of the complex numbers. It is a universal cohomology theory for pairs of varieties and regular functions, whose de Rham and Betti realizations are given by twisted de Rham and rapid decay cohomology respectively. The upshot is that one can attach to any such pair a motivic Galois group which conjecturally ...
[+]
11R58 ; 14G25 ; 11F80 ; 14C15 ; 11E72 ; 14D07 ; 11G35
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We are interested in the behaviour of Frobenius roots when the base field is fixed and the genus of the curve or the dimension of the abelian variety tends to infinity. I shall explain how to put the question and what are the answers. This happens to be a question in algebraic number theory and harmonic analysis. For curves (and for number fields) these are my old results with Serge Vladuts, for abelian varieties those of J.-P. Serre (séminaire Bourbaki, 2018) and my work in progress with Nicolas Nadirashvili.
[-]
We are interested in the behaviour of Frobenius roots when the base field is fixed and the genus of the curve or the dimension of the abelian variety tends to infinity. I shall explain how to put the question and what are the answers. This happens to be a question in algebraic number theory and harmonic analysis. For curves (and for number fields) these are my old results with Serge Vladuts, for abelian varieties those of J.-P. Serre (séminaire ...
[+]
11S40 ; 11R04 ; 11R58 ; 14G15 ; 14K15