Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will describe a program to describe Hitchin components as the moduli space of some new geometric structure on the surface. This geometric structure generalizes the complex structure. Its construction uses the punctual Hilbert scheme of the plane. It should give a unified description of Hitchin components without fixed complex structure on the surface. I also present a generalization to character varieties for non split real groups in the spirit of G-Higgs bundles.
[-]
I will describe a program to describe Hitchin components as the moduli space of some new geometric structure on the surface. This geometric structure generalizes the complex structure. Its construction uses the punctual Hilbert scheme of the plane. It should give a unified description of Hitchin components without fixed complex structure on the surface. I also present a generalization to character varieties for non split real groups in the ...
[+]
30F60 ; 14D21 ; 53C15 ; 14C05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will present a joint work with Sara Angela Filippini, Laurent Manivel and Fabio Tanturri (arXiv: 1704.01436). We introduce a new class of varieties, called orbital degeneracy loci. The idea is to use any orbit closure in a representation of an algebraic group to generalise the classical construction of degeneracy loci of morphisms between vector bundles, and of zero loci as well. After giving the definition of an orbital degeneracy locus, I will explain how to control the canonical bundle of these varieties: under some Gorenstein condition on the orbit closure, it is possible to construct examples of varieties with trivial canonical bundle or of Fano type. Finally, if time will permit, I will give some explicit examples of such degeneracy loci, which allow to construct many Calabi-Yau varieties of dimension three and four, and some new Fano fourfolds.
[-]
I will present a joint work with Sara Angela Filippini, Laurent Manivel and Fabio Tanturri (arXiv: 1704.01436). We introduce a new class of varieties, called orbital degeneracy loci. The idea is to use any orbit closure in a representation of an algebraic group to generalise the classical construction of degeneracy loci of morphisms between vector bundles, and of zero loci as well. After giving the definition of an orbital degeneracy locus, I ...
[+]
14M12 ; 14C05 ; 14M15 ; 14J60 ; 14J32 ; 14J45