En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14C20 8 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
By the work of Brunella and McQuillan, it is known that smooth foliated surfaces of general type with only canonical singularities admit a unique canonical model. It is then natural to wonder if these canonical models have a good moduli theory and, in particular, if they admit a moduli functor.In this talk, I will show that the canonical models and their minimal partial du Val resolutions are bounded.

14C20 ; 14E99 ; 32M25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.[-]
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* ...[+]

14J10 ; 14J28 ; 14J50 ; 14C20 ; 14C22 ; 14J27 ; 14L30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Topics on $K3$ surfaces - Lecture 2: Kummer surfaces - Sarti, Alessandra (Auteur de la Conférence) | CIRM H

Multi angle

Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.[-]
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* ...[+]

14J10 ; 14J28 ; 14J50 ; 14C20 ; 14C22 ; 14J27 ; 14L30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.[-]
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* ...[+]

14J10 ; 14J28 ; 14J50 ; 14C20 ; 14C22 ; 14J27 ; 14L30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.[-]
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* ...[+]

14J10 ; 14J28 ; 14J50 ; 14C20 ; 14C22 ; 14J27 ; 14L30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Topics on $K3$ surfaces - Lecture 6: Classification - Sarti, Alessandra (Auteur de la Conférence) | CIRM H

Multi angle

Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.[-]
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* ...[+]

14J10 ; 14J28 ; 14J50 ; 14C20 ; 14C22 ; 14J27 ; 14L30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We show that the ring of Siegel-Jacobi forms of bounded ratio between weight and index is not finitely generated. Our main tool is the theory of toroidal b-divisors and their relation to convex geometry. As a byproduct of our methods, we prove a conjecture of Kramer about the representation of all Siegel-Jacobi forms as sections of certain line bundles and we recover a formula due to Tai for the asymptotic dimension of the space of Siegel-Jacobi forms of given ratio between weight and index. This is joint work with José Burgos Gil, David Holmes and Robin de Jong.[-]
We show that the ring of Siegel-Jacobi forms of bounded ratio between weight and index is not finitely generated. Our main tool is the theory of toroidal b-divisors and their relation to convex geometry. As a byproduct of our methods, we prove a conjecture of Kramer about the representation of all Siegel-Jacobi forms as sections of certain line bundles and we recover a formula due to Tai for the asymptotic dimension of the space of Siegel-Jacobi ...[+]

14C20 ; 11F50 ; 32U05 ; 14J15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.[-]
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* ...[+]

14J10 ; 14J28 ; 14J50 ; 14C20 ; 14C22 ; 14J27 ; 14L30

Sélection Signaler une erreur