Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
The SYZ fibration is a conjectural geometric explanation for the phenomenon of mirror symmetry for maximal degenerations of complex Calabi-Yau varieties. I will explain Kontsevich and Soibelman's construction of the SYZ fibration in the world of non-archimedean geometry, and its relations with the Minimal Model Program and Igusa's p-adic zeta functions. No prior knowledge of non-archimedean geometry is assumed. These lectures are based on joint work with Mircea Mustata and Chenyang Xu.
[-]
The SYZ fibration is a conjectural geometric explanation for the phenomenon of mirror symmetry for maximal degenerations of complex Calabi-Yau varieties. I will explain Kontsevich and Soibelman's construction of the SYZ fibration in the world of non-archimedean geometry, and its relations with the Minimal Model Program and Igusa's p-adic zeta functions. No prior knowledge of non-archimedean geometry is assumed. These lectures are based on joint ...
[+]
14B05 ; 14D06 ; 14E30 ; 14E18 ; 14G10 ; 14G22
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
(joint work with Peter Scholze) In our joint work with Scholze we need to give a meaning to statements like "the stack of principal G-bundles on the curve is smooth of dimension 0" and construct "smooth perfectoid charts on it". The problem is that in the perfectoid world there is no infinitesimals and thus no Jacobian criterion that would allow us to define what is a smooth morphism. The good notion in this setting is the one of a cohomologically smooth morphism, a morphism that satisfies relative Poincaré duality. I will explain a Jacobian criterion of cohomological smoothness for moduli spaces of sections of smooth algebraic varieties over the curve that allows us to solve our problems.
[-]
(joint work with Peter Scholze) In our joint work with Scholze we need to give a meaning to statements like "the stack of principal G-bundles on the curve is smooth of dimension 0" and construct "smooth perfectoid charts on it". The problem is that in the perfectoid world there is no infinitesimals and thus no Jacobian criterion that would allow us to define what is a smooth morphism. The good notion in this setting is the one of a coho...
[+]
11F85 ; 11S31 ; 11R39 ; 14G22 ; 14H40
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The SYZ fibration is a conjectural geometric explanation for the phenomenon of mirror symmetry for maximal degenerations of complex Calabi-Yau varieties. I will explain Kontsevich and Soibelman's construction of the SYZ fibration in the world of non-archimedean geometry, and its relations with the Minimal Model Program and Igusa's p-adic zeta functions. No prior knowledge of non-archimedean geometry is assumed. These lectures are based on joint work with Mircea Mustata and Chenyang Xu.
[-]
The SYZ fibration is a conjectural geometric explanation for the phenomenon of mirror symmetry for maximal degenerations of complex Calabi-Yau varieties. I will explain Kontsevich and Soibelman's construction of the SYZ fibration in the world of non-archimedean geometry, and its relations with the Minimal Model Program and Igusa's p-adic zeta functions. No prior knowledge of non-archimedean geometry is assumed. These lectures are based on joint ...
[+]
14B05 ; 14D06 ; 14E30 ; 14E18 ; 14G10 ; 14G22
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The SYZ fibration is a conjectural geometric explanation for the phenomenon of mirror symmetry for maximal degenerations of complex Calabi-Yau varieties. I will explain Kontsevich and Soibelman's construction of the SYZ fibration in the world of non-archimedean geometry, and its relations with the Minimal Model Program and Igusa's p-adic zeta functions. No prior knowledge of non-archimedean geometry is assumed. These lectures are based on joint work with Mircea Mustata and Chenyang Xu.
[-]
The SYZ fibration is a conjectural geometric explanation for the phenomenon of mirror symmetry for maximal degenerations of complex Calabi-Yau varieties. I will explain Kontsevich and Soibelman's construction of the SYZ fibration in the world of non-archimedean geometry, and its relations with the Minimal Model Program and Igusa's p-adic zeta functions. No prior knowledge of non-archimedean geometry is assumed. These lectures are based on joint ...
[+]
14B05 ; 14D06 ; 14E30 ; 14E18 ; 14G10 ; 14G22
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
I will give an introductory talk on my recent results about $p$-adic differential equations on Berkovich curves, most of them in collaboration with J. Poineau. This includes the continuity of the radii of convergence of the equation, the finiteness of their controlling graphs, the global decomposition by the radii, a bound on the size of the controlling graph, and finally the finite dimensionality of their de Rham cohomology groups, together with some local and global index theorems relating the de Rham index to the behavior of the radii of the curve. If time permits I will say a word about some recent applications to the Riemann-Hurwitz formula.
[-]
I will give an introductory talk on my recent results about $p$-adic differential equations on Berkovich curves, most of them in collaboration with J. Poineau. This includes the continuity of the radii of convergence of the equation, the finiteness of their controlling graphs, the global decomposition by the radii, a bound on the size of the controlling graph, and finally the finite dimensionality of their de Rham cohomology groups, together ...
[+]
12H25 ; 14G22
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In my work in progress on complex analytic vanishing cycles for formal schemes, I have defined integral "etale" cohomology groups of a compact strictly analytic space over the field of Laurent power series with complex coefficients. These are finitely generated abelian groups provided with a quasi-unipotent action of the fundamental group of the punctured complex plane, and they give rise to all $l$-adic etale cohomology groups of the space. After a short survey of this work, I will explain a theorem which, in the case when the space is rig-smooth, compares those groups and the de Rham cohomology groups of the space. The latter are provided with the Gauss-Manin connection and an additional structure which allow one to recover from them the "etale" cohomology groups with complex coefficients.
[-]
In my work in progress on complex analytic vanishing cycles for formal schemes, I have defined integral "etale" cohomology groups of a compact strictly analytic space over the field of Laurent power series with complex coefficients. These are finitely generated abelian groups provided with a quasi-unipotent action of the fundamental group of the punctured complex plane, and they give rise to all $l$-adic etale cohomology groups of the space. ...
[+]
32P05 ; 14F20 ; 14F40 ; 14G22 ; 32S30
Déposez votre fichier ici pour le déplacer vers cet enregistrement.