En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14H42 1 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Generic theta divisors - Budur, Nero (Author of the conference) | CIRM H

Multi angle

A principle governing deformation theory with cohomology constraints in characteristic zero, generalizing Deligne's deformation theory principle, was developed together with B. Wang, M. Rubio in terms of dg Lie modules, and, more generally, $\text{L}\infty$ modules. An application of this theory is that for a generic compact Riemann surface the theta function is at every point on the Jacobian equal to its first non-zero Taylor term, up to a holomorphic change of local coordinates and multiplication by a local holomorphic unit.[-]
A principle governing deformation theory with cohomology constraints in characteristic zero, generalizing Deligne's deformation theory principle, was developed together with B. Wang, M. Rubio in terms of dg Lie modules, and, more generally, $\text{L}\infty$ modules. An application of this theory is that for a generic compact Riemann surface the theta function is at every point on the Jacobian equal to its first non-zero Taylor term, up to a ...[+]

14B05 ; 14H42 ; 14B12

Bookmarks Report an error