En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14J10 18 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The Hassett-Keel program in genus 4 - Devleming, Kristin (Auteur de la Conférence) | CIRM H

Multi angle

Determining a modular interpretation of birational models arising from the MMP on Mg, the moduli space of genus g curves, is known as the Hassett-Keel program. The first few steps are well-understood yet the program remains quite incomplete in general for any genus g > 3. In this talk, we will discuss the complete Hassett-Keel program in genus 4. This is joint work with Kenneth Ascher, Yuchen Liu, and Xiaowei Wang.

14H10 ; 14J10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Let $f : X \to Y$ be a fibration between two projective manifolds. The Iitaka's conjecture predicts that the Kodaira dimension of $X$ is larger than the sum of the Kodaira dimension of $X$ and the Kodaira dimension of the generic fiber. We explain a proof of the Iitaka conjecture for algebraic fiber spaces over abelian varieties or projective surfaces.
It is a joint work with Mihai Paun.

14E30 ; 14K05 ; 14J10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Introduction to K-moduli Lecture 1 - Devleming, Kristin (Auteur de la Conférence) | CIRM H

Multi angle

I will introduce the concept of K-moduli illustrated by some examples of moduli spaces and related comparisons with GIT and wall-crossing phenomenon.

14J10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Introduction to K-moduli Lecture 2 - Devleming, Kristin (Auteur de la Conférence) | CIRM H

Multi angle

I will introduce the concept of K-moduli illustrated by some examples of moduli spaces and related comparisons with GIT and wall-crossing phenomenon.

14J10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
hyperelliptic curves - Belyi functions - absolute Galois group - Belyi polynomials - marked varieties - moduli spaces

11R32 ; 14J10 ; 14J29 ; 14Mxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.[-]
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* ...[+]

14J10 ; 14J28 ; 14J50 ; 14C20 ; 14C22 ; 14J27 ; 14L30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Topics on $K3$ surfaces - Lecture 2: Kummer surfaces - Sarti, Alessandra (Auteur de la Conférence) | CIRM H

Multi angle

Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.[-]
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* ...[+]

14J10 ; 14J28 ; 14J50 ; 14C20 ; 14C22 ; 14J27 ; 14L30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.[-]
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* ...[+]

14J10 ; 14J28 ; 14J50 ; 14C20 ; 14C22 ; 14J27 ; 14L30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.[-]
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* ...[+]

14J10 ; 14J28 ; 14J50 ; 14C20 ; 14C22 ; 14J27 ; 14L30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.[-]
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* ...[+]

14J10 ; 14J28 ; 14J50 ; 14C20 ; 14C22 ; 14J27 ; 14L30

Sélection Signaler une erreur