En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14M20 10 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the unirationality of Hurwitz spaces - Tanturri, Fabio (Auteur de la Conférence) | CIRM H

Multi angle

In this talk I will discuss about the unirationality of the Hurwitz spaces $H_{g,d}$ parametrizing d-sheeted branched simple covers of the projective line by smooth curves of genus $g$. I will summarize what is already known and formulate some questions and speculations on the general behaviour. I will then present a proof of the unirationality of $H_{12,8}$ and $H_{13,7}$, obtained via liaison and matrix factorizations. This is part of two joint works with Frank-Olaf Schreyer.[-]
In this talk I will discuss about the unirationality of the Hurwitz spaces $H_{g,d}$ parametrizing d-sheeted branched simple covers of the projective line by smooth curves of genus $g$. I will summarize what is already known and formulate some questions and speculations on the general behaviour. I will then present a proof of the unirationality of $H_{12,8}$ and $H_{13,7}$, obtained via liaison and matrix factorizations. This is part of two ...[+]

14H10 ; 14M20 ; 14Q05 ; 13D02

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Unirational varieties - Part 1 - Mella, Massimiliano (Auteur de la Conférence) | CIRM H

Post-edited

The aim of these talks is to give an overview to unirationality problems. I will discuss the behaviour of unirationality in families and its relation with rational connectedness. Then I will concentrate on hypersurfaces and conic bundles. These special classes of varieties are a good place where to test different techniques and try to approach the unirationality problem via rational connectedness.

14M20 ; 14G05 ; 14E05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Unirational varieties - Part 2 - Mella, Massimiliano (Auteur de la Conférence) | CIRM H

Multi angle

The aim of these talks is to give an overview to unirationality problems. I will discuss the behaviour of unirationality in families and its relation with rational connectedness. Then I will concentrate on hypersurfaces and conic bundles. These special classes of varieties are a good place where to test different techniques and try to approach the unirationality problem via rational connectedness.

14M20 ; 14G05 ; 14E05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Unirational varieties - Part 3 - Mella, Massimiliano (Auteur de la Conférence) | CIRM H

Multi angle

The aim of these talks is to give an overview to unirationality problems. I will discuss the behaviour of unirationality in families and its relation with rational connectedness. Then I will concentrate on hypersurfaces and conic bundles. These special classes of varieties are a good place where to test different techniques and try to approach the unirationality problem via rational connectedness.

14M20 ; 14G05 ; 14E05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On examples of varieties that are not stably rational - Pirutka, Alena (Auteur de la Conférence) | CIRM H

Multi angle

A variety X is stably rational if a product of X and some projective space is rational. There exists examples of stably rational non rational complex varieties. In this talk we will discuss recent series of examples of varieties, which are not stably rational and not even retract rational. The proofs involve studying the properties of Chow groups of zero-cycles and the diagonal decomposition. As concrete examples, we will discuss some quartic double solids (C. Voisin), quartic threefolds (a joint work with Colliot-Thélène), some hypersurfaces (Totaro) and others.[-]
A variety X is stably rational if a product of X and some projective space is rational. There exists examples of stably rational non rational complex varieties. In this talk we will discuss recent series of examples of varieties, which are not stably rational and not even retract rational. The proofs involve studying the properties of Chow groups of zero-cycles and the diagonal decomposition. As concrete examples, we will discuss some quartic ...[+]

14C15 ; 14M20 ; 14E08

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will first introduce K3 surfaces and determine their algebraic deRham cohomology. Next, we will see that crystalline cohomology (no prior knowledge assumed) is the "right" replacement for singular cohomology in positive characteristic. Then, we will look at one particular class of K3 surfaces more closely, namely, supersingular K3 surfaces. These have Picard rank 22 (note: in characteristic zero, at most rank 20 is possible) and form 9-dimensional moduli spaces. For supersingular K3 surfaces, we will see that there exists a period map and a Torelli theorem in terms of crystalline cohomology. As an application of the crystalline Torelli theorem, we will show that a K3 surface is supersingular if and only if it is unirational.[-]
I will first introduce K3 surfaces and determine their algebraic deRham cohomology. Next, we will see that crystalline cohomology (no prior knowledge assumed) is the "right" replacement for singular cohomology in positive characteristic. Then, we will look at one particular class of K3 surfaces more closely, namely, supersingular K3 surfaces. These have Picard rank 22 (note: in characteristic zero, at most rank 20 is possible) and form ...[+]

14J28 ; 14G17 ; 14M20 ; 14D22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Stable rationality - Lecture 1 - Pirutka, Alena (Auteur de la Conférence) | CIRM H

Post-edited

Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational nonrational varieties. This problem remained open till 1970th, when three types of such examples were produced: cubic threefolds (Clemens and Griffiths), some quartic threefolds (Iskovskikh and Manin), and some conic bundles (Artin et Mumford). The last examples are even not stably rational. The stable rationality of the first two examples was not known.
In a recent work C. Voisin established that a double solid ramified along a very general quartic is not stably rational. Inspired by this work, we showed that many quartic solids are not stably rational (joint work with J.-L. Colliot-Thélène). More generally, B. Totaro showed that a very general hypersurface of degree d is not stably rational if d/2 is at least the smallest integer not smaller than (n+2)/3. The same method allowed us to show that the rationality is not a deformation invariant (joint with B. Hassett and Y. Tschinkel).
In this series of lectures, we will discuss the methods to obtain the results above: the universal properties of the Chow group of zero-cycles, the decomposition of the diagonal, and the specialization arguments.[-]
Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational ...[+]

14C15 ; 14C25 ; 14E08 ; 14H05 ; 14J70 ; 14M20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Stable rationality - Lecture 3 - Pirutka, Alena (Auteur de la Conférence) | CIRM H

Multi angle

Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational nonrational varieties. This problem remained open till 1970th, when three types of such examples were produced: cubic threefolds (Clemens and Griffiths), some quartic threefolds (Iskovskikh and Manin), and some conic bundles (Artin et Mumford). The last examples are even not stably rational. The stable rationality of the first two examples was not known.
In a recent work C. Voisin established that a double solid ramified along a very general quartic is not stably rational. Inspired by this work, we showed that many quartic solids are not stably rational (joint work with J.-L. Colliot-Thélène). More generally, B. Totaro showed that a very general hypersurface of degree d is not stably rational if d/2 is at least the smallest integer not smaller than (n+2)/3. The same method allowed us to show that the rationality is not a deformation invariant (joint with B. Hassett and Y. Tschinkel).
In this series of lectures, we will discuss the methods to obtain the results above: the universal properties of the Chow group of zero-cycles, the decomposition of the diagonal, and the specialization arguments.[-]
Let X be a smooth and projective complex algebraic variety. Several notions, describing how close X is to projective space, have been developed: X is rational if an open subset of X is isomorphic to an open of a projective space, X is stably rational if this property holds for a product of X with some projective space, and X is unirational if X is rationally dominated by a projective space. A classical Lüroth problem is to find unirational ...[+]

14C15 ; 14C25 ; 14E08 ; 14H05 ; 14J70 ; 14M20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

​On the Lüroth problem for real varieties - Benoist, Olivier (Auteur de la Conférence) | CIRM H

Post-edited

The Lüroth problem asks whether every unirational variety is rational. Over the complex numbers, it has a positive answer for curves and surfaces, but fails in higher dimensions. In this talk, I will consider the Lüroth problem for real algebraic varieties that are geometrically rational, and explain a counterexample not accounted for by the topology of the real locus or by unramified cohomology. This is joint work with Olivier Wittenberg.

14M20 ; 14E08

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Stably irrational hypersurfaces of small slopes - Schreieder, Stefan (Auteur de la Conférence) | CIRM H

Multi angle

We show that over any uncountable field of characteristic different from two, a very general hypersurface of dimension $n > 2$ and degree at least $log_2 (n) + 2$ is not stably rational. This significantly improves earlier results of Kollár and Totaro. As a byproduct of our proof, we obtain new counterexamples to the integral Hodge conjecture, answering a question of Voisin and Colliot-Thélène – Voisin.

14J70 ; 14E08 ; 14M20 ; 14C30

Sélection Signaler une erreur