En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 03E35 12 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Monochromatic sumsets for colourings of $\mathbb{R}$ - Soukup, Daniel T. (Auteur de la Conférence) | CIRM H

Multi angle

N. Hindman, I. Leader and D. Strauss proved that if $2^{\aleph_0}<\aleph_\omega$ then there is a finite colouring of $\mathbb{R}$ so that no infinite sumset $X+X$ is monochromatic. Now, we prove a consistency result in the other direction: we show that consistently relative to a measurable cardinal for any $c:\mathbb{R}\to r$ with $r$ finite there is an infinite $X\subseteq \mathbb{R}$ so that $c\upharpoonright X+X$ is constant. The goal of this presentation is to discuss the motivation, ideas and difficulties involving this result, as well as the open problems around the topic. Joint work with P. Komjáth, I. Leader, P. Russell, S. Shelah and Z. Vidnyánszky.[-]
N. Hindman, I. Leader and D. Strauss proved that if $2^{\aleph_0}<\aleph_\omega$ then there is a finite colouring of $\mathbb{R}$ so that no infinite sumset $X+X$ is monochromatic. Now, we prove a consistency result in the other direction: we show that consistently relative to a measurable cardinal for any $c:\mathbb{R}\to r$ with $r$ finite there is an infinite $X\subseteq \mathbb{R}$ so that $c\upharpoonright X+X$ is constant. The goal of this ...[+]

03E02 ; 03E35 ; 05D10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Some results on set mappings - Komjáth, Péter (Auteur de la Conférence) | CIRM H

Multi angle

I give a survey of some recent results on set mappings.

03E05 ; 03E35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
By the Cantor-Bendixson theorem, subtrees of the binary tree on $\omega$ satisfy a dichotomy - either the tree has countably many branches or there is a perfect subtree (and in particular, the tree has continuum manybranches, regardless of the size of the continuum). We generalize this to arbitrary regular cardinals $\kappa$ and ask whether every $\kappa$-tree with more than $\kappa$ branches has a perfect subset. From large cardinals, this statement isconsistent at a weakly compact cardinal $\kappa$. We show using stacking mice that the existence of a non-domestic mouse (which yields a model with a proper class of Woodin cardinals and strong cardinals) is a lower bound. Moreover, we study variants of this statement involving sealed trees, i.e. trees with the property that their set of branches cannot be changed by certain forcings, and obtain lower bounds for these as well. This is joint work with Yair Hayut.[-]
By the Cantor-Bendixson theorem, subtrees of the binary tree on $\omega$ satisfy a dichotomy - either the tree has countably many branches or there is a perfect subtree (and in particular, the tree has continuum manybranches, regardless of the size of the continuum). We generalize this to arbitrary regular cardinals $\kappa$ and ask whether every $\kappa$-tree with more than $\kappa$ branches has a perfect subset. From large cardinals, this ...[+]

03E45 ; 03E35 ; 03E55 ; 03E05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
The productivity of the $\kappa $-chain condition, where $\kappa $ is a regular, uncountable cardinal, has been the focus of a great deal of set-theoretic research. In the 1970's, consistent examples of $kappa-cc$ posets whose squares are not $\kappa-cc$ were constructed by Laver, Galvin, Roitman and Fleissner. Later, ZFC examples were constructed by Todorcevic, Shelah, and others. The most difficult case, that in which $\kappa = \aleph{_2}$, was resolved by Shelah in 1997.
In the first part of this talk, we shall present analogous results regarding the infinite productivity of chain conditions stronger than $\kappa-cc$. In particular, for any successor cardinal $\kappa$, we produce a ZFC example of a poset with precaliber $\kappa$ whose $\omega ^{th}$ power is not $\kappa-cc$. To do so, we introduce and study the principle $U(\kappa , \mu , \theta , \chi )$ asserting the existence of a coloring $c:\left [ \kappa \right ]^{2}\rightarrow \theta $ satisfying a strong unboundedness condition.
In the second part of this talk, we shall introduce and study a new cardinal invariant $\chi \left ( \kappa \right )$ for a regular uncountable cardinal $\kappa$ . For inaccessible $\kappa$, $\chi \left ( \kappa \right )$ may be seen as a measure of how far away $\kappa$ is from being weakly compact. We shall prove that if $\chi \left ( \kappa \right )> 1$, then $\chi \left ( \kappa \right )=max(Cspec(\kappa ))$, where:
(1) Cspec$(\kappa)$ := {$\chi (\vec{C})\mid \vec{C}$ is a sequence over $\kappa$} $\setminus \omega$, and
(2) $\chi \left ( \vec{C} \right )$ is the least cardinal $\chi \leq \kappa $ such that there exist $\Delta\in\left [ \kappa \right ]^{\kappa }$ and
b : $\kappa \rightarrow \left [ \kappa \right ]^{\chi }$ with $\Delta \cap \alpha \subseteq \cup _{\beta \in b(\alpha )}C_{\beta }$ for every $\alpha < \kappa$.
We shall also prove that if $\chi (\kappa )=1$, then $\kappa$ is greatly Mahlo, prove the consistency (modulo the existence of a supercompact) of $\chi (\aleph_{\omega +1})=\aleph_{0}$, and carry a systematic study of the effect of square principles on the $C$-sequence spectrum.
In the last part of this talk, we shall unveil an unexpected connection between the two principles discussed in the previous parts, proving that, for infinite regular cardinals $\theta< \kappa ,\theta \in Cspec(\kappa )$ if there is a closed witness to $U_{(\kappa ,\kappa ,\theta ,\theta )}$.
This is joint work with Chris Lambie-Hanson.[-]
The productivity of the $\kappa $-chain condition, where $\kappa $ is a regular, uncountable cardinal, has been the focus of a great deal of set-theoretic research. In the 1970's, consistent examples of $kappa-cc$ posets whose squares are not $\kappa-cc$ were constructed by Laver, Galvin, Roitman and Fleissner. Later, ZFC examples were constructed by Todorcevic, Shelah, and others. The most difficult case, that in which $\kappa = \aleph{_2}$, ...[+]

03E35 ; 03E05 ; 03E75 ; 06E10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Universal ${ \aleph }_{2}$-Aronszajn trees - Dzamonja, Mirna (Auteur de la Conférence) | CIRM H

Multi angle

We report on a joint work in progress with Rahman Mohammadpour in which we study the problem of the possible existence of a universal tree under weak embeddings in the classes of $\aleph_{2}$-Aronszajn and wide $\aleph_{2}$-Aronszajn trees. This problem is more complex than previously thought, in particular it seems not to be resolved under ShFA $+$ CH using the technology of weakly Lipshitz trees. We show that under CH, for a given $\aleph_{2}$-Aronszajn tree $\mathrm{T}$ without a weak ascent path, there is an $\aleph_{2^{-\mathrm{C}\mathrm{C}}}$ countably closed forcing forcing which specialises $\mathrm{T}$ and adds an $\aleph_{2}$-Aronszajn tree which does not embed into T. One cannot however apply the ShFA to this forcing.[-]
We report on a joint work in progress with Rahman Mohammadpour in which we study the problem of the possible existence of a universal tree under weak embeddings in the classes of $\aleph_{2}$-Aronszajn and wide $\aleph_{2}$-Aronszajn trees. This problem is more complex than previously thought, in particular it seems not to be resolved under ShFA $+$ CH using the technology of weakly Lipshitz trees. We show that under CH, for a given $\a...[+]

03E05 ; 03E35 ; 03E50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Welch games to Laver Ideals - Foreman, Matthew (Auteur de la Conférence) | CIRM H

Multi angle

Kiesler and Tarski characterized weakly compact cardinals as those inaccessible cardinals such that for every $\kappa$-complete subalgebra $\mathcal{B}\subseteq P(\kappa))$ every $\kappa$-complete filter on $\mathcal{B}$ can be extended to a $\kappa$-complete ultrafilter on $\mathcal{B}.$ Welch proposed a variant of Holy-Schlict games where, for a fixed $\gamma$, player I and II take turns, with I playing an increasing sequence of subalgebras $\mathcal{A}_{\mathrm{i}}$ and II playing an increasing sequence of ultrafilters $\mathcal{U}_{\mathrm{i}}$ for $ i<\gamma$. Player II wins if she can continue playing of length $\gamma.$
By Kiesler-Tarski, player II wins the game with $\gamma=\omega$ if and only if $\kappa$ is weakly compact. It is immediate that if $\kappa$ is measurable, then II wins the game of length $2^{\kappa}$. Are these the only cases?
Nielsen and Welch proved that if II has a winning strategy in the game of length $\omega+1$ then there is an inner model with a measurable cardinal. Welch conjectured that if II has a winning strategy in the game of length $\omega+1$ then there is a precipitous ideal on $\kappa$ .
Our first result confirms Welch's conjecture: if II has a winning strategy in the game of length $\omega+1$ then there is a normal, $\kappa$-complete precipitous ideal on $\kappa$ . In fact if $\gamma\leq\kappa$ is regular and II wins the game of length $\gamma$, then there is a normal, $\kappa$-complete ideal on $\kappa$ with a dense tree that is $<-\gamma$-closed.
But is this result vacuous? Our second result is that if you start with a model with sufficient fine structure and a measurable cardinal then there is a forcing extension where:
1. $\kappa$ is inaccessible and there is no $\kappa^{+}$-saturated ideal on $\kappa$,
2. for each regular $\gamma\leq\kappa$, player II has a winning strategy in the game of length $\gamma,$
3. for all regular $\gamma\leq\kappa$ there is a normal fine ideal $\mathcal{I}_{\gamma}$ such that $P(\kappa)/\mathcal{I}\gamma$ has a dense, $<-\gamma$ closed tree.
The proofs of these results use techniques from the proofs of determinacy, lottery forcing, iterated club shooting and new techniques in inner model theory. They leave many problems open and not guaranteed to be difficult.
This is joint work of M Foreman, M. Magidor and M. Zeman.[-]
Kiesler and Tarski characterized weakly compact cardinals as those inaccessible cardinals such that for every $\kappa$-complete subalgebra $\mathcal{B}\subseteq P(\kappa))$ every $\kappa$-complete filter on $\mathcal{B}$ can be extended to a $\kappa$-complete ultrafilter on $\mathcal{B}.$ Welch proposed a variant of Holy-Schlict games where, for a fixed $\gamma$, player I and II take turns, with I playing an increasing sequence of subalgebras ...[+]

03E55 ; 03E35 ; 03E65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

A journey guided by the stars - Lietz, Andreas (Auteur de la Conférence) | CIRM H

Multi angle

We show that starting from an inaccessible limit of supercompact cardinals, there is a staionary set preserving forcing so that the Nonstationary Ideal is dense in the generic extension. This answers positively a question of Woodin.

03E35 ; 03E50 ; 03E55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Large minimal non-sigma-scattered linear orders - Moore, Justin (Auteur de la Conférence) | CIRM H

Multi angle

The purpose of this article is to give new constructions of linear orders which are minimal with respect to being non-σ-scattered. Specifically, we will show that Jensen's principle ♢ implies that there is a minimal Countryman line, answering a question of Baumgartner. We also produce the first consistent examples of minimal non-σ-scattered linear orders of cardinality greater than ℵ1, as given a successor cardinal κ+, we obtain such linear orderings of cardinality κ+ with the additional property that their square is the union of κ-many chains. We give two constructions: directly building such examples using forcing, and also deriving their existence from combinatorial principles. The latter approach shows that such minimal non-σ-scattered linear orders of cardinality κ+ exist for every cardinal κ in Gödel's constructible universe, and also (using work of Rinot) that examples must exist at successors of singular strong limit cardinals in the absence of inner models satisfying the existence of a measurable cardinal μ of Mitchell order μ++. [-]
The purpose of this article is to give new constructions of linear orders which are minimal with respect to being non-σ-scattered. Specifically, we will show that Jensen's principle ♢ implies that there is a minimal Countryman line, answering a question of Baumgartner. We also produce the first consistent examples of minimal non-σ-scattered linear orders of cardinality greater than ℵ1, as given a successor cardinal κ+, we obtain such linear ...[+]

03E04 ; 03E35 ; 03E45 ; 06A05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In 1971 Baumgartner showed it is consistent that any two $\aleph_1$-dense subsets of the real line are order isomorphic. This was important both for the methods of the proof and for consequences of the result. We introduce methods that lead to an analogous result for $\aleph_2$-dense sets.

Keywords : forcing - large cardinals - Baumgartner isomorphism - infinitary Ramsey principles - reflection principles

03E35 ; 03E05 ; 03E50 ; 03E55 ; 03E57

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The combinatorics of successors of singular cardinals presents a number of interesting open problems. We discuss the interactions at successors of singular cardinals of two strong combinatorial properties, the stationary set reflection and the tree property. Assuming the consistency of infinitely many supercompact cardinals, we force a model in which both the stationary set reflection and the tree property hold at $\aleph_{\omega^2+1}$. Moreover, we prove that the two principles are independent at this cardinal, indeed assuming the consistency of infinitely many supercompact cardinals it is possible to force a model in which the stationary set reflection holds, but the tree property fails at $\aleph_{\omega^2+1}$. This is a joint work with Menachem Magidor.
Keywords : forcing - large cardinals - successors of singular cardinals - stationary reflection - tree property[-]
The combinatorics of successors of singular cardinals presents a number of interesting open problems. We discuss the interactions at successors of singular cardinals of two strong combinatorial properties, the stationary set reflection and the tree property. Assuming the consistency of infinitely many supercompact cardinals, we force a model in which both the stationary set reflection and the tree property hold at $\aleph_{\omega^2+1}$. ...[+]

03E05 ; 03E35 ; 03E55

Sélection Signaler une erreur