En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 05A15 22 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Maps decorated by the Ising model are a remarkable instance of a model of non-uniform maps with very nice enumerative properties. In this talk, I will first explain how one can obtain a differential equation for the generating function of Ising-decorated cubic maps in arbitrary genus, related to the Kadomtsev--Petviashvili (KP) hierarchy. In particular, this leads to an efficient algorithm to enumerate Ising cubic maps in high genus. I will also present and compare implementations of this algorithm in Maple and SageMath. This is based on a joint work with Mireille Bousquet-Mélou and Baptiste Louf.[-]
Maps decorated by the Ising model are a remarkable instance of a model of non-uniform maps with very nice enumerative properties. In this talk, I will first explain how one can obtain a differential equation for the generating function of Ising-decorated cubic maps in arbitrary genus, related to the Kadomtsev--Petviashvili (KP) hierarchy. In particular, this leads to an efficient algorithm to enumerate Ising cubic maps in high genus. I will also ...[+]

05A15 ; 82B20 ; 37K10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Lattice paths are fundamental combinatorial objects, and their enumeration has strong connections to other fields (physics, computer science). In this talk, we will review enumeration of models of lattice paths with forbidden patterns and with dynamic boundary in both one- and two-dimensional models. We will also examine how automata-based approaches often result in the simplification and classification of enumeration problems.

05A15 ; 05A05 ; 05A19

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Lattice paths and heaps - Viennot, Xavier (Auteur de la Conférence) | CIRM H

Multi angle

Recently several papers appears on ArXiv, on various topics apparently unrelated such as: spin system observable (T. Helmuth, A. Shapira), Fibonacci polynomials (A. Garsia, G. Ganzberger), fully commutative elements in Coxeter groups (E. Bagno, R. Biagioli, F. Jouhet, Y. Roichman), reciprocity theorem for bounded Dyck paths (J. Cigler, C. Krattenthaler), uniform random spanning tree in graphs (L. Fredes, J.-F. Marckert). In each of these papers the theory of heaps of pieces plays a central role. We propose a walk relating these topics, starting from the well-known loop erased random walk model (LERW), going around the classical bijection between lattice paths and heaps of cycles, and a second less known bijection due to T. Helmuth between lattice paths and heaps of oriented loops, in relation with the Ising model in physics, totally non-backtracking paths and zeta function in graphs. Dyck paths, these two bijections involve heaps of dimers and heaps of segments. A duality between these two kinds of heaps appears in some of the above papers, in relation with orthogonal polynomials and fully commutative elements. If time allows we will finish this excursion with the correspondence between heaps of segments, staircase polygons and q-Bessel functions.[-]
Recently several papers appears on ArXiv, on various topics apparently unrelated such as: spin system observable (T. Helmuth, A. Shapira), Fibonacci polynomials (A. Garsia, G. Ganzberger), fully commutative elements in Coxeter groups (E. Bagno, R. Biagioli, F. Jouhet, Y. Roichman), reciprocity theorem for bounded Dyck paths (J. Cigler, C. Krattenthaler), uniform random spanning tree in graphs (L. Fredes, J.-F. Marckert). In each of these papers ...[+]

01A55 ; 05A15 ; 11B39 ; 20F55 ; 82B20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Le diamant aztèque - Cours 2 - Corteel, Sylvie (Auteur de la Conférence) | CIRM H

Multi angle

Le but du mini-cours sera de faire un cours introductif à différentes méthodes énumeratives à travers l'exemple des pavages par dominos du diamant aztèque. On essaiera de voir les fonctions (super)-symétriques, les moments de polynômes bi-orthogonaux, les évaluations de determinants, les algorithmes de génération...

05A15 ; 33C45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Chemins du plan évitant un quadrant - Bousquet-Mélou, Mireille (Auteur de la Conférence) | CIRM H

Multi angle

Les chemins du plan confinés dans un quadrant, ou plus généralement dans un cône convexe, ont été beaucoup étudiés ces dernières années, et ont donné lieu à de jolis résultats. Le plus remarquable dit que, pour les chemins à petits pas, la série génératrice est différentiellement finie si et seulement si un certain groupe de transformations rationnelles, construit à partir des pas autorisés, est fini. Les méthodes employées, allant de l'algèbre élémentaire sur les séries formelles à l'analyse complexe, en passant, entre autres, par le calcul formel, sont variées, ce qui participe au charme du sujet. Mais quid des chemins dans un cône non convexe, et, typiquement, des chemins évitant un quadrant ? On étudiera les deux cas les plus naturels (pas NSEO, quadrant négatif ou quadrant Ouest interdit), en esquissant avec optimisme ce que pourrait être une classification pour ce problème.[-]
Les chemins du plan confinés dans un quadrant, ou plus généralement dans un cône convexe, ont été beaucoup étudiés ces dernières années, et ont donné lieu à de jolis résultats. Le plus remarquable dit que, pour les chemins à petits pas, la série génératrice est différentiellement finie si et seulement si un certain groupe de transformations rationnelles, construit à partir des pas autorisés, est fini. Les méthodes employées, allant de l'algèbre ...[+]

82B20 ; 05A15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
- Normalized characters of the symmetric groups,
- Kerov polynomials and Kerov positivity conjecture,
- Stanley character polynomials and multirectangular coordinates of Young diagrams,
- Stanley character formula and maps,
- Jack characters
- characterization, partial results.

05E10 ; 05E16 ; 20C30 ; 05A15 ; 05C10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
- Normalized characters of the symmetric groups,
- Kerov polynomials and Kerov positivity conjecture,
- Stanley character polynomials and multirectangular coordinates of Young diagrams,
- Stanley character formula and maps,
- Jack characters
- characterization, partial results.

05A15 ; 05D05 ; 46L54 ; 43A65 ; 20E22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Chemins à grands pas dans le quadrant - Bousquet-Mélou, Mireille (Auteur de la Conférence) | CIRM H

Multi angle

L'énumération des chemins du quadrant formés de petits pas (c'est-à-dire de pas aux 8 plus proches voisins) est maintenant bien comprise. En particulier, leur série génératrice est différentiellement finie (solution d'une ED linéaire à coefficients polynomiaux) si et seulement si un certain groupe de transformations rationnelles, associé à l'ensemble des pas autorisés (encore appelé modèle), est fini. Il n'est pas du tout évident d'étendre à des marches à pas plus grands les méthodes qui ont permis cette classification. Guy Fayolle et Kilian Raschel ont décrit les difficultés qu'il faut attendre si on essaie de généraliser l'approche par analyse complexe (laquelle est très puissante dans le cas de petits pas). Dans cet exposé, j'expliquerai comment étendre à des pas quelconques l'approche algébrique la plus simple, qui repose seulement sur des séries formelles. Elle ne s'applique qu'aux modèles à groupe fini, et encore, pas à tous : pour les chemins à petits pas, elle résout 19 des 23 modèles concernés, laissant de côté les 4 modèles algébriques. Mais elle est tout de même assez robuste : on verra par exemple que, pour des modèles à pas dans {-2,-1,0,1}$^2$ elle résout 231 des 240 modèles à groupe fini, mettant ainsi en lumière 9 modèles particulièrement intéressants.
Travail en commun avec Alin Bostan et Steve Melczer.[-]
L'énumération des chemins du quadrant formés de petits pas (c'est-à-dire de pas aux 8 plus proches voisins) est maintenant bien comprise. En particulier, leur série génératrice est différentiellement finie (solution d'une ED linéaire à coefficients polynomiaux) si et seulement si un certain groupe de transformations rationnelles, associé à l'ensemble des pas autorisés (encore appelé modèle), est fini. Il n'est pas du tout évident d'étendre à des ...[+]

05A15 ; 60C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Galois theory and walks in the quarter plane - Hardouin, Charlotte (Auteur de la Conférence) | CIRM H

Post-edited

In the recent years, the nature of the generating series of walks in the quarter plane has attracted the attention of many authors in combinatorics and probability. The main questions are: are they algebraic, holonomic (solutions of linear differential equations) or at least hyperalgebraic (solutions of algebraic differential equations)? In this talk, we will show how the nature of the generating function can be approached via the study of a discrete functional equation over a curve E, of genus zero or one. In the first case, the functional equation corresponds to a so called q-difference equation and all the related generating series are differentially transcendental. For the genus one case, the dynamic of the functional equation corresponds to the addition by a given point P of the elliptic curve E. In that situation, one can relate the nature of the generating series to the fact that the point P is of torsion or not.[-]
In the recent years, the nature of the generating series of walks in the quarter plane has attracted the attention of many authors in combinatorics and probability. The main questions are: are they algebraic, holonomic (solutions of linear differential equations) or at least hyperalgebraic (solutions of algebraic differential equations)? In this talk, we will show how the nature of the generating function can be approached via the study of a ...[+]

05A15 ; 30D05 ; 39A13 ; 12F10 ; 12H10 ; 12H05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

The classification of excursions - Mishna, Marni (Auteur de la Conférence) | CIRM H

Multi angle

Excursions are walks which start and end at prescribed locations. In this talk we consider the counting sequences of excursions, more precisely, the functional equations their generating functions satisfy. We focus on two sources of excursion problems: walks defined by their allowable steps, taken on integer lattices restricted to cones; and walks on Cayley graphs with a given set of generators. The latter is related to the cogrowth problems of groups. In both cases we are interested in relating the nature of the generating function (i.e. rational, algebraic, D-finite, etc.) and combinatorial properties of the models. We are also interested in the relation between the excursions, and less restricted families of walks.
Please note: A few corrections were made to the PDF file of this talk, the new version is available at the bottom of the page.[-]
Excursions are walks which start and end at prescribed locations. In this talk we consider the counting sequences of excursions, more precisely, the functional equations their generating functions satisfy. We focus on two sources of excursion problems: walks defined by their allowable steps, taken on integer lattices restricted to cones; and walks on Cayley graphs with a given set of generators. The latter is related to the cogrowth problems of ...[+]

05A15 ; 05C25 ; 60G50 ; 20F05

Sélection Signaler une erreur