En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 05A19 6 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Vertex degrees in planar maps - Drmota, Michael (Auteur de la Conférence) | CIRM H

Multi angle

We consider the family of rooted planar maps $M_\Omega$ where the vertex degrees belong to a (possibly infinite) set of positive integers $\Omega$. Using a classical bijection with mobiles and some refined analytic tools in order to deal with the systems of equations that arise, we recover a universal asymptotic behavior of planar maps. Furthermore we establish that the number of vertices of a given degree satisfies a multi (or even infinitely)-dimensional central limit theorem. We also discuss some possible extension to maps of higher genus.
This is joint work with Gwendal Collet and Lukas Klausner[-]
We consider the family of rooted planar maps $M_\Omega$ where the vertex degrees belong to a (possibly infinite) set of positive integers $\Omega$. Using a classical bijection with mobiles and some refined analytic tools in order to deal with the systems of equations that arise, we recover a universal asymptotic behavior of planar maps. Furthermore we establish that the number of vertices of a given degree satisfies a multi (or even inf...[+]

05A19 ; 05A16 ; 05C10 ; 05C30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Recently, Armstrong, Reiner and Rhoades associated with any (well generated) complex reflection group two parking spaces, and conjectured their isomorphism. This has to be seen as a generalisation of the bijection between non-crossing and non-nesting partitions, both counted by the Catalan numbers. In this talk, I will review the conjecture and discuss a new approach towards its proof, based on the geometry of the discriminant of a complex reflection group. This is an ongoing joint project with Iain Gordon.[-]
Recently, Armstrong, Reiner and Rhoades associated with any (well generated) complex reflection group two parking spaces, and conjectured their isomorphism. This has to be seen as a generalisation of the bijection between non-crossing and non-nesting partitions, both counted by the Catalan numbers. In this talk, I will review the conjecture and discuss a new approach towards its proof, based on the geometry of the discriminant of a complex ...[+]

06B15 ; 05A19 ; 55R80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Planar maps are planar graphs embedded in the sphere viewed modulo continuous deformations. There are two families of bijections between planar maps and lattice paths that are applied to prove scaling limit results of planar maps to so-called Liouville quantum gravity surfaces: metric bijections and mating-of-trees bijections. We will present scaling limit results obtained in this way, including works with Bernardi and Sun and with Albenque and Sun.[-]
Planar maps are planar graphs embedded in the sphere viewed modulo continuous deformations. There are two families of bijections between planar maps and lattice paths that are applied to prove scaling limit results of planar maps to so-called Liouville quantum gravity surfaces: metric bijections and mating-of-trees bijections. We will present scaling limit results obtained in this way, including works with Bernardi and Sun and with Albenque ...[+]

60F17 ; 05A19 ; 60C05 ; 60D05 ; 60G60 ; 60J67

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We present some connections between two families of walks. The first family is formed by two-dimensional walks moving in three directions, and confined within a triangle. The other family consists of Motzkin paths with bounded height, in which the horizontal steps may be forbidden at maximal height. This is a joint work with Julien Courtiel and Andrew Elvey Price.

05A19 ; 60G50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We give a general construction of triangulations, starting from a walk with small steps in the quarter plane This construction is a discrete version of the mating of trees. We use a special instance of this construction to give a bijection between maps equipped with a rooted spanning tree and walks in the quarter plane. We also show how the construction allows to recover several known bijections between such objects in a uniform way.

05A19 ; 05C38 ; 05C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
There is the same number of $n \times n$ alternating sign matrices (ASMs) as there is of descending plane partitions (DPPs) with parts no greater than $n$, but finding an explicit bijection is, despite many efforts, an open problem for about $40$ years now. So far, four pairs of statistics that have the same joint distribution have been identified. We introduce extensions of ASMs and of DPPs along with $n+3$ pairs of statistics that have the same joint distribution. The ASM-DPP equinumerosity is obtained as an easy consequence by considering the $(-1)$enumerations of these extended objects with respect to one pair of the $n+3$ pairs of statistics. One important tool of our proof is a multivariate generalization of the operator formula for the number of monotone triangles with prescribed bottom row that generalizes Schur functions. Joint work with Florian Aigner.[-]
There is the same number of $n \times n$ alternating sign matrices (ASMs) as there is of descending plane partitions (DPPs) with parts no greater than $n$, but finding an explicit bijection is, despite many efforts, an open problem for about $40$ years now. So far, four pairs of statistics that have the same joint distribution have been identified. We introduce extensions of ASMs and of DPPs along with $n+3$ pairs of statistics that have the ...[+]

05A05 ; 05A15 ; 05A19 ; 15B35 ; 82B20 ; 82B23

Sélection Signaler une erreur