m

F Nous contacter


0

Documents  05C50 | enregistrements trouvés : 6

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

A non-backtracking walk on a graph is a directed path such that no edge is the inverse of its preceding edge. The non-backtracking matrix of a graph is indexed by its directed edges and can be used to count non-backtracking walks of a given length. It has been used recently in the context of community detection and has appeared previously in connection with the Ihara zeta function and in some generalizations of Ramanujan graphs. In this work, we study the largest eigenvalues of the non-backtracking matrix of the Erdos-Renyi random graph and of the Stochastic Block Model in the regime where the number of edges is proportional to the number of vertices. Our results confirm the "spectral redemption" conjecture that community detection can be made on the basis of the leading eigenvectors above the feasibility threshold.
A non-backtracking walk on a graph is a directed path such that no edge is the inverse of its preceding edge. The non-backtracking matrix of a graph is indexed by its directed edges and can be used to count non-backtracking walks of a given length. It has been used recently in the context of community detection and has appeared previously in connection with the Ihara zeta function and in some generalizations of Ramanujan graphs. In this work, we ...

05C50 ; 05C80 ; 68T05 ; 91D30

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Unramified graph covers of finite degree
Li, Winnie (Auteur de la Conférence) | CIRM (Editeur )

Given a finite connected undirected graph $X$, its fundamental group plays the role of the absolute Galois group of $X$. The familiar Galois theory holds in this setting. In this talk we shall discuss graph theoretical counter parts of several important theorems for number fields. Topics include
(a) Determination, up to equivalence, of unramified normal covers of $X$ of given degree,
(b) Criteria for Sunada equivalence,
(c) Chebotarev density theorem.
This is a joint work with Hau-Wen Huang.
Given a finite connected undirected graph $X$, its fundamental group plays the role of the absolute Galois group of $X$. The familiar Galois theory holds in this setting. In this talk we shall discuss graph theoretical counter parts of several important theorems for number fields. Topics include
(a) Determination, up to equivalence, of unramified normal covers of $X$ of given degree,
(b) Criteria for Sunada equivalence,
(c) Chebotarev density ...

05C25 ; 05C50 ; 11R32 ; 11R44 ; 11R45

Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Problems with continuous quantum walks
Godsil, Chris (Auteur de la Conférence) | CIRM (Editeur )

Continuous quantum walks are of great interest in quantum computing and, over the last decade, my group has been studying this topic intensively. As graph theorists, one of our main goals has been to get a better understanding of the relation between the properties of a walk and the properties of the underlying graph. We have had both successes and failures. The failures lead to a number of interesting open questions, which I will present in my talk.
Continuous quantum walks are of great interest in quantum computing and, over the last decade, my group has been studying this topic intensively. As graph theorists, one of our main goals has been to get a better understanding of the relation between the properties of a walk and the properties of the underlying graph. We have had both successes and failures. The failures lead to a number of interesting open questions, which I will present in my ...

05C50 ; 81Q35

Z