En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 58K40 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Let $(X,0)$ be an ICIS of dimension $2$ and let $f :(X,0)\to\mathbb{C} ^2$ be a map germ with an isolated instability. Given $F : (\mathcal{X} , 0) \to (\mathbb{C} \times \mathbb{C}^2, 0)$ a stable unfolding of $f$, we look to the invariants related to the family $f_s$ and we find relations between them. We obtain necessary and sufficient conditions for $F$ to be Whitney equisingular. (Joint work with B. Orfice-Okamoto and J. N. Tomazella)

32S30 ; 58K15 ; 58K40 ; 32S05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Given a space curve, the surface ruled by tangent lines to the curve is called the tangent surface or the tangent developable to the curve. Tangent surfaces were studied by many mathemati- cians, Euler, Monge, Cayley, etc. The tangent surface has necessarily singularities along the original curve (curve of regression). The singularities are classified by Cleave, Mond, Arnold, Shcherbak and so on. In this talk we provide several generalisations of the known classification results. In particular we consider, in one direction, tangent surfaces to possibly singular curves in an ambient space of any dimension with any affine connection. In another direction, we study "abnormal" tangent surfaces to integral curves of a Cartan distribution in five space. The exposition will be performed via a generalised notion of "frontal".[-]
Given a space curve, the surface ruled by tangent lines to the curve is called the tangent surface or the tangent developable to the curve. Tangent surfaces were studied by many mathemati- cians, Euler, Monge, Cayley, etc. The tangent surface has necessarily singularities along the original curve (curve of regression). The singularities are classified by Cleave, Mond, Arnold, Shcherbak and so on. In this talk we provide several generalisations ...[+]

53A20 ; 57R45 ; 58K40

Sélection Signaler une erreur