Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study locally the representation varieties of fundamental groups of smooth complex algebraic varieties. These are schemes whose complex points parametrize such representations into linear algebraic groups. At a given representation, the structure of the formal local ring to the representation variety tells about the obstructions to deform formally this representation, which is ultimately related to topological obstructions to the possible fundamental groups of complex algebraic varieties. This was first described by Goldman and Millson in the case of compact Kähler manifold, using formal deformation theory and differential graded Lie algebras. We review this using methods of Hodge theory and of derived deformation theory and we are able to describe locally the representation variety for non-compact smooth varieties and representations underlying a variation of Hodge structure.
[-]
We study locally the representation varieties of fundamental groups of smooth complex algebraic varieties. These are schemes whose complex points parametrize such representations into linear algebraic groups. At a given representation, the structure of the formal local ring to the representation variety tells about the obstructions to deform formally this representation, which is ultimately related to topological obstructions to the possible ...
[+]
14D07 ; 14C30 ; 14D15 ; 18D50
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study a notion of shuffle for trees which extends the usual notion of a shuffle for two natural numbers. Our notion of shuffle is motivated by the theory of operads and occurs in the theory of dendroidal sets. We give several equivalent descriptions of the shuffles, and prove some algebraic and combinatorial properties. In addition, we characterize shuffles in terms of open sets in a topological space associated to a pair of trees. This is a joint work with Ieke Moerdijk.
[-]
We study a notion of shuffle for trees which extends the usual notion of a shuffle for two natural numbers. Our notion of shuffle is motivated by the theory of operads and occurs in the theory of dendroidal sets. We give several equivalent descriptions of the shuffles, and prove some algebraic and combinatorial properties. In addition, we characterize shuffles in terms of open sets in a topological space associated to a pair of trees. This is a ...
[+]
55U10 ; 18D50 ; 05C05